Những câu hỏi liên quan
Nguyễn Thiều Công Thành
Xem chi tiết
đức trung okay
26 tháng 8 2017 lúc 6:24

KON 'NICHIWA ON" NANOKO: chào cô

Bình luận (0)
Vũ Thu Mai
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
alibaba nguyễn
22 tháng 4 2021 lúc 12:30

Đặt \(x=\frac{2a}{b+c};y=\frac{2b}{c+a};z=\frac{2c}{a+b}\) Thì bài toán thành chứng minh

\(3\left(\sqrt{\frac{a+b}{2c}}+\sqrt{\frac{b+c}{2a}}+\sqrt{\frac{c+a}{2b}}\right)^2\ge\frac{8\left(a+b+c\right)^3}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Áp dụng holder ta có:

\(\left(\sqrt{\frac{a+b}{2c}}+\sqrt{\frac{b+c}{2a}}+\sqrt{\frac{c+a}{2b}}\right)^2\left(2c\left(a+b\right)^2+2a\left(b+c\right)^2+2b\left(c+a\right)^2\right)\)

\(\ge\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]^3=8\left(a+b+c\right)^3\)

\(\Rightarrow VT\ge3.\frac{8\left(a+b+c\right)^3}{2a\left(b+c\right)^2+2b\left(c+a\right)^2+2c\left(a+b\right)^2}\)

Từ đây ta cần chứng minh:

\(3.\frac{8\left(a+b+c\right)^3}{2a\left(b+c\right)^2+2b\left(c+a\right)^2+2c\left(a+b\right)^2}\ge\frac{8\left(a+b+c\right)^3}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\Leftrightarrow2a\left(b+c\right)^2+2b\left(c+a\right)^2+2c\left(a+b\right)^2\le3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Leftrightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\ge0\)( đúng )

Vậy có ĐPCM

Bình luận (0)
 Khách vãng lai đã xóa
vũ tiền châu
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Lưu gia Huy
28 tháng 8 2017 lúc 9:02

Bạn làm đúng rồi

Bình luận (0)
Lưu gia Huy
28 tháng 8 2017 lúc 9:02

mình học lớp 9 cho tớ hỏi sửa lớp ở đâu

Bình luận (0)
KCLH Kedokatoji
Xem chi tiết
tth_new
20 tháng 10 2020 lúc 15:54

1111111111111111111

\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)

Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)

Là xong.

Bình luận (0)
 Khách vãng lai đã xóa
NGUYỄN MINH HUY
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 5 2020 lúc 23:37

\(VT=\sum\sqrt{\frac{1}{2}\left(x^2+2xy+y^2\right)+\frac{1}{2}\left(x^2+y^2\right)}\)

\(VT\ge\sum\sqrt{\frac{1}{2}\left(x+y\right)^2+\frac{1}{4}\left(x+y\right)^2}=\sqrt{\frac{3}{4}\left(x+y\right)^2}\)

\(VT\ge\frac{\sqrt{3}}{2}\left(x+y\right)+\frac{\sqrt{3}}{2}\left(y+z\right)+\frac{\sqrt{3}}{2}\left(z+x\right)=\sqrt{3}\left(x+y+z\right)\)

Dấu "=" xảy ra khi \(x=y=z\)

Bình luận (0)
Lê Thị Khánh Huyền
Xem chi tiết
Akai Haruma
16 tháng 7 2019 lúc 23:07

Lời giải:

Ta thấy:

\(x^2+xy+y^2=\frac{3}{4}(x^2+2xy+y^2)+\frac{1}{4}(x^2-2xy+y^2)=\frac{3}{4}(x+y)^2+\frac{1}{4}(x-y)^2\)

\(\geq \frac{3}{4}(x+y)^2\) với mọi $x,y>0$
\(\Rightarrow \sqrt{x^2+xy+y^2}\geq \frac{\sqrt{3}}{2}(x+y)\)

Hoàn toàn tương tự:

\(\sqrt{y^2+yz+z^2}\geq \frac{\sqrt{3}}{2}(y+z); \sqrt{z^2+zx+x^2}\geq \frac{\sqrt{3}}{2}(x+z)\)

Cộng theo vế các BĐT trên và rút gọn:

\(\Rightarrow \sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+x^2}\geq \sqrt{3}(x+y+z)\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z$

Bình luận (0)
Nguyễn Minh Huy
Xem chi tiết