Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tran Hien
Xem chi tiết
Ngô Minh Thái
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
7 tháng 3 2017 lúc 17:19

Ta có : A = 1.2 + 2.3 + 3.4 + ...... + 100.101

=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + 100.101.102

=> 3A = 100.101.102

=> A = 100.101.102/3

=> A = 343400

Nguyễn Thị Kim Dung
Xem chi tiết
Phạm Đức Nhân
25 tháng 12 2020 lúc 20:46

cho mi sửa lại:

\(a) A = 1^2+2^3+3^4+...+2014^{2015} b) B = 101^2+102^2+...+199^2+200^2 c) C = 1^3+2^4+3^5+4^6+...+99^{101}+100^{102}\)

Khách vãng lai đã xóa
Hoàng Thanh Tú
9 tháng 3 2021 lúc 22:39

dấu 8 là nhân còn dấu ^ là mũ ạ

Khách vãng lai đã xóa
Khánh Lê
Xem chi tiết
CÔNG CHÚA THẤT LẠC
26 tháng 5 2017 lúc 6:45

a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

Hà Anh Suri ★
26 tháng 5 2017 lúc 7:03

a) Có A=\(1+3+3^2+3^3+....+3^{100}\)

\(\Rightarrow\)3A =\(3\left(1+3+3^2+3^3+...+3^{100}\right)\)=\(3+3^2+3^3+3^4+...+3^{101}\)

\(\Rightarrow2A=3+3^2+3^3+....+3^{101}-1-3-3^2-3^3-....-3^{100}=3^{101}-1\)\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)

Bài b/c/d : bn cứ lm tương tự.

Chu Dieu Ha
Xem chi tiết
Bảo Chi Lâm
26 tháng 7 2018 lúc 15:55

mk nghĩ câu hỏi này ko xứng tầm lớp 5 đâu!

Phạm Tuấn Đạt
26 tháng 7 2018 lúc 15:58

\(\frac{3}{2.3.4}+\frac{3}{3.4.5}+...+\frac{3}{100.101.102}\)

\(=\frac{3}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{100.101}-\frac{1}{101.102}\right)\)

\(=\frac{3}{2}\left(\frac{1}{6}-\frac{1}{101.102}\right)\)

baby Cute
Xem chi tiết
baby Cute
25 tháng 9 2016 lúc 19:14

ai trả lời giúp tui đi

Đom Đóm
Xem chi tiết
Băng băng
23 tháng 6 2017 lúc 16:14

Các bạn nhớ ủng hộ cho nhất sông núi  nhé

Cảm ơn bạn

Đom Đóm
23 tháng 6 2017 lúc 16:33

A = 1 . 2 + 2 . 3 + 3 . 4 + ... + 99 .100

3 . A = 1. 2 . 3 + 2 . 3 . 3 + 3 . 4 . 3 + ... + 99 . 100 . 3

3 . A = 1 . 2 . 3 + 2 . 3 . ( 4 - 1 ) + 3 . 4 . ( 5 - 2 ) + ... + 99 . 100 . ( 1001 - 998 )

3 . A = 1 . 2 . 3 + 2 . 3 . 4 - 1 . 2 . 3 + 3 . 4 . 5 - 2 . 3 . 4 + ... + 99 . 100 . 1001 - 998 . 99 . 100

3 . A = 99 . ( 100 . 10 )

A = ( 99 . 100 . 10 ) : 3

A = 33000

Phan Nguyễn Tùng Anh
Xem chi tiết
o0o_Còn Ai Ở Lại Chốn Nà...
30 tháng 7 2017 lúc 11:50

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) Bạn hãy xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

Nguyễn Thị Hồng Chuyê...
5 tháng 9 2019 lúc 22:23

batngobatngobatngo

Nguyễn Thùy Dương
Xem chi tiết
Toru
29 tháng 10 2023 lúc 7:27

$B=1+2+3+4+...+2022+2023$

Số các số hạng của B là:

$(2023-1):1+1=2023$ (số)

Tổng B bằng:

$(2023+1)\cdot2023:2=2047276$

$---$

$C=2+4+6+...+98+100$

Số các số hạng của C là:

$(100-2):2+1=50$ (số)

Tổng C bằng:

$(100+2)\cdot50:2=2550$

$---$

$D=1+3+5+...+97+99$

Số các số hạng của D là:

$(99-1):2+1=50$ (số)

Tổng D bằng:

$(99+1)\cdot50:2=2500$

$---$

$E=10+14+18+...+98+102$

Số các số hạng của E là:

$(102-10):4+1=24$ (số)

Tổng E bằng:

$(102+10)\cdot24:2=1344$

$Toru$

HT.Phong (9A5)
29 tháng 10 2023 lúc 7:26

Số lượng số hạng: 

\(\left(2023-1\right):1+1=2023\) (số hạng) 

Tổng B là:

\(B=\left(2023+1\right)\cdot2023:2=2047276\)

_______________

Số lượng số hạng là:

\(\left(100-2\right):2+1=50\) (số hạng)

Tổng C là: 

\(C=\left(100+2\right)\cdot50:2=2550\)

________________

Số lượng số hạng là:

\(\left(99-1\right):2+1=50\) (số hạng)

Tổng D là:

\(D=\left(99+1\right)\cdot50:2=2500\) 

________________

Số lượng số hạng là:

\(\left(102-10\right):4+1=24\) (số hạng)

Tổng E là:

\(E=\left(102+10\right)\cdot24:2=1334\)