Toán nâng cao:
Tìm GTNN của biểu thức: \(N=5x^2+2y^2+4xy-2x+4y+2015\)
Tìm GTNN của biểu thức: \(M=5x^2+2y^2+4xy-2x+ay+2019\)
Tìm Min của biểu thức sau:
A = 5x2 + 2y2 + 4xy - 2x +4y +2005
Ta có: A = 5x2 + 2y2 + 4xy - 2x + 4y + 2005
= (4x2+ 4xy+y2 ) + ( x2 - 2x + 1) + (y2 + 4y + 2) + 2002
= (2x+y)2 + (x-1)2 + (y+2)2 +2002
Ta có: (2x+y)2>=0 V x,y. Dấu "=" XR khi 2x+y=0 <=> 2x=-y
(x-1)2 >=0 Vx. Dấu "=" XR khi x=1
((y+2)2 >=0 V y. Dấu "=" XR khi y=-2
Vậy A>=2002 V x,y. Dấu "=" XR khi 2x=-y; x=1; y=2 <=> (x,y)=(1;2)
Do đó Min A=2002 tại (x,y)=(1,2)
Kẻ Vô Danh: Em kết luận giá trị y sai nhé.
GTNN của A là 2002 khi x = 1, y = - 2.
GTNN của A=5x2+2y2+4xy-2x+4y+2021
Giúp mình với!!!!!
a=(2x+y)^2+(x-1)^2+(y+2)^2+2021-5=2016
Amin=2016
cho x khac 0 tim GTNN : B= 5x^2 +4xy+2y^2 - 2x + 4y +20
B= \(4x^2+4xy+y^2+x^2-2x+1+y^2+4y+4+15\)
= \(\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+15\ge15\)
=> GTNN của B là 15
Chứng tỏ biểu thức sau luôn dương với mọi số thực x,y: M= 5x2+2y2+4xy-2x+4y+6
\(M=5x^2+2y^2+4xy-2x+4y+6\)
\(=\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\)
\(=\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+1\)
Do \(\left(2x+y\right)^2\ge0\forall x;y\left(x-1\right)^2\ge0\forall x;\left(y+2\right)^2\ge0\forall y\)
\(\Rightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\forall x;y\)
\(\Rightarrow M\ge1>0\forall x;y\)
\(\left(đpcm\right)\)
Tìm GTNN của: \(B=5x^2+2y^2+4xy-2x+4y+2020\)
\(B=5x^2+2y^2+4xy-2x+4y+2020\)
\(=4x^2+4xy+y^2+x^2-2x+1+4y^2+4y+1+2018\)
\(=\left(2x+y\right)^2+\left(x-1\right)^2+\left(2y+1\right)^2+2018\ge2018\left(\text{với mọi x;y}\right)\)
\(\text{Dấu "=" xảy ra khi: }x-1=0;2x+1=0\Leftrightarrow x=1;y=\frac{-1}{2}\)
\(\text{Vậy GTNN của }D\text{ là }2018\text{ tại }x=1;y=\frac{-1}{2}\)
=4.x^2+x^2+y^2+y^2+4xy-2x+4y+1+4+2015
=[4.x^2+4xy+y^2]+[x^2-2x+1]+[y^2-4y+4]
=[2x+y]^2+[x-1]^2+[y-2]^2+2015>hoặc bằng2015
giá trị nhỏ nhất là 2015
Tìm GTNN của biểu thức : 3x^2+4xy+4y^2-3x-2y+15
Tìm GTNN của biểu thức : 3x^2+4xy+4y^2-3x-2y+15
\(A=3x^2+4xy+4y^2-3x-2y+15\)
\(=\left(x^2+4xy+4y^2\right)-\left(x+2y\right)+\frac{1}{4}+2x^2-2x+\frac{59}{4}\)
\(=\left(x+2y-\frac{1}{2}\right)^2+2\left(x-\frac{1}{2}\right)^2+\frac{57}{4}\ge\frac{57}{4}\)
Đẳng thức xảy ra khi x =1/2; y =0
Vậy..
tìm giá trị nhỏ nhất của biểu thức
A=\(5x^2+2y^2+4xy-2x+4y+2024\)
\(A=4x^2+4xy+y^2+x^2-2x+1+y^2+4y+4+2019\)
\(A=\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+2019\ge2019\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}2x+y=0\\x-1=0\\y+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)