Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Linh Nhi
Xem chi tiết
Hà Trang
Xem chi tiết
Kẻ Vô Danh
17 tháng 6 2016 lúc 10:09

Ta có: A = 5x+ 2y+ 4xy - 2x + 4y + 2005

             = (4x2+ 4xy+y) + ( x- 2x + 1) + (y+ 4y + 2) + 2002

             = (2x+y)2 + (x-1)+ (y+2)2 +2002

Ta có: (2x+y)2>=0 V x,y. Dấu "=" XR khi 2x+y=0 <=> 2x=-y

          (x-1)2 >=0 Vx. Dấu "=" XR khi x=1

          ((y+2)>=0 V y. Dấu "=" XR khi y=-2

Vậy A>=2002 V x,y. Dấu "=" XR khi 2x=-y; x=1; y=2 <=> (x,y)=(1;2)

Do đó Min A=2002 tại (x,y)=(1,2)

Cô Hoàng Huyền
17 tháng 6 2016 lúc 10:29

Kẻ Vô Danh: Em kết luận giá trị y sai nhé.

GTNN của A  là 2002 khi  x = 1, y = - 2.

Đặng Nguyễn Khánh Uyên
Xem chi tiết
ngonhuminh
26 tháng 12 2016 lúc 19:10

a=(2x+y)^2+(x-1)^2+(y+2)^2+2021-5=2016

Amin=2016

Lê Thị Vâng
Xem chi tiết
Nguyễn Mạnh Tân
10 tháng 3 2019 lúc 19:54

B= \(4x^2+4xy+y^2+x^2-2x+1+y^2+4y+4+15\)

\(\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+15\ge15\)

=> GTNN của B là 15

Ngọc Thảo
Xem chi tiết
Khôi Bùi
22 tháng 10 2018 lúc 16:38

\(M=5x^2+2y^2+4xy-2x+4y+6\)

\(=\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\)

\(=\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+1\)

Do \(\left(2x+y\right)^2\ge0\forall x;y\left(x-1\right)^2\ge0\forall x;\left(y+2\right)^2\ge0\forall y\)

\(\Rightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\forall x;y\)

\(\Rightarrow M\ge1>0\forall x;y\)

\(\left(đpcm\right)\)

Dương Tũn
Xem chi tiết
Minh Triều
11 tháng 8 2015 lúc 21:25

\(B=5x^2+2y^2+4xy-2x+4y+2020\)

\(=4x^2+4xy+y^2+x^2-2x+1+4y^2+4y+1+2018\)

\(=\left(2x+y\right)^2+\left(x-1\right)^2+\left(2y+1\right)^2+2018\ge2018\left(\text{với mọi x;y}\right)\)

\(\text{Dấu "=" xảy ra khi: }x-1=0;2x+1=0\Leftrightarrow x=1;y=\frac{-1}{2}\)

\(\text{Vậy GTNN của }D\text{ là }2018\text{ tại }x=1;y=\frac{-1}{2}\)

Lê Chí Công
11 tháng 8 2015 lúc 21:24

=4.x^2+x^2+y^2+y^2+4xy-2x+4y+1+4+2015

=[4.x^2+4xy+y^2]+[x^2-2x+1]+[y^2-4y+4]

=[2x+y]^2+[x-1]^2+[y-2]^2+2015>hoặc bằng2015

giá trị nhỏ nhất là 2015

Law Trafargal
Xem chi tiết
Law Trafargal
Xem chi tiết
tthnew
25 tháng 10 2019 lúc 7:49

\(A=3x^2+4xy+4y^2-3x-2y+15\)

\(=\left(x^2+4xy+4y^2\right)-\left(x+2y\right)+\frac{1}{4}+2x^2-2x+\frac{59}{4}\)

\(=\left(x+2y-\frac{1}{2}\right)^2+2\left(x-\frac{1}{2}\right)^2+\frac{57}{4}\ge\frac{57}{4}\)

Đẳng thức xảy ra khi x =1/2; y =0

Vậy..

Khách vãng lai đã xóa
Đinh Như Huyền
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 5 2020 lúc 19:09

\(A=4x^2+4xy+y^2+x^2-2x+1+y^2+4y+4+2019\)

\(A=\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+2019\ge2019\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}2x+y=0\\x-1=0\\y+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)