Phân tích các đa thức sau thành nhân tử
a) A=2x^2+5xy-3y^2
b) B=x^8-16
Phân tích đa thức sau thành nhân tử
a. 27a^2b^2+18ab+3
b.5x^2-y+5xy-x
c.2x^3y^2-8x^3-12x^2y-6xy^2-y^3+x^2y^3
Phân tích các đa thức sau thành nhân tử
a, 9x^3y^2 + 3x^2y^2
b, x^2 - 2x + 1 - y^2
- Giúp mình với ạ, mai mình thi rồi-
a: \(9x^3y^2+3x^2y^2\)
\(=3x^2y^2\cdot3x+3x^2y^2\cdot1\)
\(=3x^2y^2\left(3x+1\right)\)
b: \(x^2-2x+1-y^2\)
\(=\left(x^2-2x+1\right)-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
Bài 1: Phân tích đa thức thành nhân tử
a) (6x+3)-(2x-5)(2x+1)
b) (3x-2)(4x-3)-(2-3x)(x-1)-2(3x-2)(x+1)
Bài 2*:Phân tích đa thức thành nhân tử
a) (a-b)(a+2b)-(b-a)(2a-b)-(a-b)(a+3b)
b) 5xy3-2xy2-15y2+6z
c) (x+y)(2x-y)+(2x-y)(3x-y)-(y-2x)
d) ab3c2-a2b2c2+ab2c3-a2bc
e) x2(y-z)+y2(z-x)+z2(x-y)
f) x2-6xy+9y2+4x-12y
Bài 1:
a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)
\(=\left(2x+1\right)\left(3-2x+5\right)\)
\(=\left(2x+1\right)\left(8-2x\right)\)
\(=2\left(4-x\right)\left(2x+1\right)\)
b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)
\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)
\(=\left(3x-2\right)\left(3x-6\right)\)
\(=3\left(3x-2\right)\left(x-2\right)\)
Bài 2:
a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)
\(=\left(a-b\right)\left(2a-4b\right)\)
\(=2\left(a-b\right)\left(a-2b\right)\)
f: Ta có: \(x^2-6xy+9y^2+4x-12y\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-3y+4\right)\)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
a.2x^2-4x-8y^2+2
b.16+2xy-x^2-y^2
c.x^2-4+3.(x-2)^2
d.x^4+2x^2-15
c: \(x^2-4+3\left(x-2\right)^2\)
\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(3x-6\right)\)
\(=\left(x-2\right)\left(x+2+3x-6\right)\)
\(=\left(4x-4\right)\left(x-2\right)\)
\(=4\left(x-1\right)\left(x-2\right)\)
phân tích đa thức thành nhân tử
a) 9-3y b)x^2+2x-4y^2+1
\(a,9-3y=\left(3-\sqrt{3y}\right)\left(3+\sqrt{3y}\right)\)
\(b,x^2+2x-4y^2+1=\left(x^2+2x+1\right)-4y^2=\left(x+1\right)^2-\left(2y\right)^2=\left(x-2y+1\right)\left(x+2y+1\right)\)
Phân tích các đa thức sau đây thành nhân tử
a, 36x^2 - ( 3x -2 ) ^2
b, 16(4x+5)^5 - 25 (2x+2)^2
c, ( x - y + 4 )^2
d, (x+1)^4 - (x-1)^4
e, 16x^2 - 24xy + 9y^2
f, -x^4/4 + 2x^2y^3 - 4y^6
g , 64x^3 +1
h, x^3y^6z^9 - 125
k, 27x^6 - 8x^3
I , x^6 - y^6
m, 27x^3 - 54x^2y + 36xy^2 - 8y^3
n, y^9 - 9x^2y^6 + 27x^4y^3 - 27x^6
làm ơn giải chi tiết giúp mik vs ạ , cảm ơn
a: =(6x)^2-(3x-2)^2
=(6x-3x+2)(6x+3x-2)
=(9x-2)(3x+2)
d: \(=\left[\left(x+1\right)^2-\left(x-1\right)^2\right]\left[\left(x+1\right)^2+\left(x-1\right)^2\right]\)
\(=4x\cdot\left[x^2+2x+1+x^2-2x+1\right]\)
=8x(x^2+1)
e: =(4x)^2-2*4x*3y+(3y)^2
=(4x-3y)^2
f: \(=-\left(\dfrac{1}{4}x^4-2\cdot\dfrac{1}{2}x^2\cdot2y^3+4y^6\right)\)
\(=-\left(\dfrac{1}{2}x^2-2y^3\right)^2\)
g: =(4x)^3+1^3
=(4x+1)(16x^2-4x+1)
k: =x^3(27x^3-8)
=x^3(3x-2)(9x^2+6x+4)
l: =(x^3-y^3)(x^3+y^3)
=(x-y)(x+y)(x^2-xy+y^2)(x^2+xy+y^2)
Phân tích đa thức thành nhân tử
a) \(15a^2b^3+5a^3b^2\)
b) \(x^2-2x+x-y^2\)
\(a,15a^2b^3+5a^3b^2=5a^2b^2\left(3b+a\right)\\ b,x^2-2x+1-y^2=\left(x-1\right)^2-y^2=\left(x-y-1\right)\left(x+y-1\right)\)
a) 15a2b3+5a3b2=5a2b2(3b+a)
b) x2-2x+x-y2=( x2-y2)-(2x+x)
=(x-y)(x+y)-x(2-1)
=(x-y)(x+y)-x3
Bài 5. Phân tích các đa thức thành nhân tử
a) (x2-4x)2-8(x2-4x)+15 b) (x2+2x)2+9x2+18x+20
c) ( x+1)(x+2)(x+3)(x+4)-24 d) (x-y+5)2-2(x-y+5)+1
Bài 6. Phân tích các đa thức thành nhân tử
a) x2y+x2-y-1 b) (x2+x)2+4(x2+x)-12
c) (6x+5)2(3x+2)(x+1)-6
Bài 1: Thực hiện phép tính
a) 2x2y (2x2y2 - xy2) b) (x - 1)(2x + 3)
c) (20x3y4 + 10x2y3 - 5xy) : 5xy d) (y - 3x)2 - (y2 - 6xy)
Bài 2: Phân tích đa thức thành nhân tử
a) 4xy + 4xz b) x2 - y2 + 9 - 6x
Bài 3: Thực hiện phép tính
a) 3xy/y+z + 3xz/y+z b) x/x+2 - x/x-2
Bài 4: Một túi quà có dạng hình chóp tứ giác đều có độ dài cạnh đáy là 12cm, đường cao mặt bên xuất phát từ đỉnh 10cm.
a) Tính thể tích túi quà.
b) Tính số tiền để mua giấy màu làm túi quà (không tính mép dán). Biết rằng giá 1m2 giấy màu là 200.000đ.
Bài 1:
\(a,2x^2y\left(2x^2y^2-xy^2\right)\\ =2x^2x^2y^2y-2x^2x.y^2.y=2x^4y^3-2x^3y^3\\ b,\left(x-1\right)\left(2x+3\right)\\ =x.2x+x.3-1.2x-1.3=2x^2+3x-2x-3\\ =2x^2+x-3\\ c,\left(20x^3y^4+10x^2y^3-5xy\right):5xy\\ =20x^3y^4:5xy+10x^2y^3:5xy-5xy:5xy\\ =\left(20:5\right).\left(x^3:x\right).\left(y^4:y\right)+\left(10:5\right).\left(x^2:x\right).\left(y^3:y\right)-\left(5:5\right).\left(x:x\right).\left(y:y\right)\\ =4x^2y^3+2xy^2-1\\ d,\left(y-3x\right)^2-\left(y^2-6xy\right)\\ =\left[y^2-2.y.3x+\left(3x\right)^2\right]-\left(y^2-6xy\right)\\ =y^2-6xy+9x^2-y^2+6xy =9x^2\)
Bài 2:
\(a,4xy+4xz=4x\left(y+z\right)\\ b,x^2-y^2+9-6x\\ =\left(x^2-6x+9\right)-y^2\\ =\left(x-3\right)^2-y^2\\ =\left(x-3-y\right)\left(x-3+y\right)\)
Bài 3:
\(a,\dfrac{3xy}{y+z}+\dfrac{3xz}{y+z}\\=\dfrac{3xy+3xz}{y+z}\\ =\dfrac{3x\left(y+z\right)}{\left(y+z\right)}=3x\left(Với:y\ne-z\right)\\ b,\dfrac{x}{x+2}-\dfrac{x}{x-2}\\ =\dfrac{x\left(x-2\right)-x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}\\ =\dfrac{x^2-2x-x^2-2x}{\left(x+2\right)\left(x-2\right)}=0\)