Cho (P): y = ax° + bx + c. Tìm các số a,b,c để đồ thị là một parabol thỏa:
a) Đi qua A(0;1), B(1;2), C(3;-1)
b) Đi qua ba điểm M(0;-1) và N(1;0) và P(2;3).
c) Đi qua M(1;-2), N(0;4), P(2;1)
d) Đi qua A(3;1), B(-1;2) và có hoành độ đỉnh bằng 2.
cho (P): y =2x +bx +c. Tìm các số b,c để đồ thị là một parabol thỏa:
a) Đỉnh A(-1;-2)
b) Đi qua hai điểm M(0;-1) và N(4;0).
c) Đi qua M(1;-2) và có hoành độ đỉnh là 2.
đ) Đi qua A(0;4) và có trục đối xứng là đường thẳng x = 1.
Cho (P) : y= x^2 + bx+ c. Tìm các số b,c để đồ thị là một parabol thỏa:
a) Đỉnh A(1;2)
b) Đỉnh I(-3;1)
c) Đi qua điểm M(1;-1) và có hoành độ đỉnh bằng 4.
d) Đi qua M(1;2) và có hoành độ đỉnh là 2.
e) Đi qua A(3;3) và có trục đối xứng là đường thẳng x = 1.
a, xác định parabol y = ax^2 + bx + c đạt cực tiểu bằng 4 tại x = -2 và đồ thị đi qua A ( 0 ; 6)
b, xác định GTNN của hàm số y = x^2 - 4x + 1
a.
\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=-2\\4a-2b+c=4\\c=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=4a\\4a-2.4a+6=4\\c=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}b=4a=2\\a=\dfrac{1}{2}\\c=6\end{matrix}\right.\) \(\Rightarrow y=\dfrac{1}{2}x^2+2x+6\)
b.
\(y_{min}=y_{CT}=\dfrac{4ac-b^2}{4a}=\dfrac{4.1.1-\left(-4\right)^2}{4.1}=-3\)
Tìm các hệ số a, b, ca,b,c của hàm số y=ax^2 + bx +cy=ax 2 +bx+c biết đồ thị của hàm số đó đi qua ba điểm A(1;-1)A(1;−1) , B(-2;-10)B(−2;−10) và C(0;-2)C(0;−2).
\(\left(P\right):y=x^2+bx+c\) đi qua điểm K(0;2) =>c=2
theo bài ra: \(\dfrac{-\Delta}{4a}=1\Leftrightarrow4ac-b^2=4\Leftrightarrow\left[{}\begin{matrix}b=2\left(tm\right)\\b=-2\left(loại\right)\end{matrix}\right.\)
=>a+b=3
cho hàm số y = ax^2 + bx + c(a khác 0). tìm a, b, c biết hàm số đó có gtln = 5 khi x = -2 và đồ thị đi qua M(1;-1)
\(y=ax^2+bx+c\left(d\right)\)
Do y có gtln là 5 khi x=-2
\(\Rightarrow\left\{{}\begin{matrix}5=a\left(-2\right)^2+b\left(-2\right)+c\\-\dfrac{b}{2a}=-2\\a< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4a-2b+c=5\\4a-b=0\end{matrix}\right.\)
Có \(M\in\left(d\right)\Rightarrow a+b+c=-1\)
Có hệ \(\left\{{}\begin{matrix}4a-2b+c=5\\4a+b=0\\a+b+c=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{-2}{3}\\b=-\dfrac{8}{3}\\c=\dfrac{7}{3}\end{matrix}\right.\)(tm)
Vậy...
1. Parabol y = ax^2 + bx +C.đi qua A(8;0) và có đỉnh A(6;-12) có phương trình là?
2. Parabol y = ax^2 + bx +C đạ cực tiểu bằng 4 tại x =-2 và đi qua A(0;6) có pt là?
3. Parabol y = ax^2 + bx +C đi qua A(0;-1) , B(1;-1) , C( -1;1) có pt là?
4. Cho M €(P) : y = x^2 và A(2;0). Để AM ngắn nhất thì?
\(a\ne0\)
a/ \(\left\{{}\begin{matrix}64a+8b+c=0\\-\frac{b}{2a}=6\\\frac{4ac-b^2}{4a}=-12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}64a+8b+c=0\\b=-12a\\4ac-b^2+48a=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=32a\\b=-12a\\4a.\left(32a\right)-\left(-12a\right)^2+48a=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-36\\c=96\end{matrix}\right.\)
\(\Rightarrow y=3x^2-36x+96\)
b/ \(\left\{{}\begin{matrix}c=6\\-\frac{b}{2a}=-2\\\frac{4ac-b^2}{4a}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}c=6\\b=4a\\24a-16a^2=16a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=2\\c=6\end{matrix}\right.\) \(\Rightarrow y=\frac{1}{2}x^2+2x+6\)
Bài 1 : Vẽ parabol và đường thẳng trên cùng một hệ trục tọa độ và tìm tọa độ giao điểm của chúng
Bài 2 : Cho hàm số : y = ax2 ( a ≠ 0 )
a ) Xác định a để đồ thị hàm số đi qua điểm A ( -1 ; 2 )
b ) Vẽ đồ thị hàm số vừa tìm được
c ) Tìm các điểm trên đồ thị có tung độ = 4
d ) Tìm các điểm trên đồ thị và cách đều 2 trục