tìm x, y thộc z
X-3XY+3Y=3
Bài 1 : tìm x,y thuộc Z, biết
a) ( x - 1 ) . ( y + 3) = 5
b) x . 3xy + 3y = 12
Tìm x, y thuộc Z sao cho x -3xy+3y=12
Tìm x thộc Z, thỏa mãn: 6xy - 4x + 3y = 5
Lời giải:
$6xy-4x+3y=5$
$\Rightarrow 2x(3y-2)+3y=5$
$\Rightarrow 2x(3y-2)+(3y-2)=3$
$\Rightarrow (3y-2)(2x+1)=3$
Với $x,y$ nguyên thì $2x+1, 3y-2$ nguyên. Mà tích của chúng bằng 3 nên ta xét các TH sau:
TH1: $2x+1=1, 3y-2=3\Rightarrow y=\frac{5}{3}$ (loại)
TH2: $2x+1=-1, 3y-2=-3\Rightarrow y=\frac{-1}{3}$ (loại)
TH3: $2x+1=3, 3y-2=1\Rightarrow x=1; y=1$
TH4: $2x+1=-3, 3y-2=-1\Rightarrow y=\frac{1}{3}$ (loại)
Tìm x,y,z biết: a) x^2+y^2-4x+4y+8=0 b) 5x^2-4xy+y^2=0 c) x^2+2y^2+z^2-2xy-2y-4z+5=0 d) 3x^2+3y^2+3xy-3x+3y+3=0 e) 2x^2+y^2+2z^2-2xy-2xz+2yz-2z-2z-2x+2=0
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
d)3x2+3y2+3xy-3x+3y+3=0
⇔ 6x2+6y2+6xy-6x+6y+6=0
⇔ 3(x+y)2+3(x-1)2+3(y+1)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Phân tích các đa thức sau thành nhân tử:
a) a²-b²-2a+2b.
b) 3x-3y-5x(y-x)
c) x(x+y)²-y(x+y)²+xy-x²
d) (x−y+4)² - (2x+3y-1)²
e) 16-x²+4xy-4y²
f) (x+3)³+(x-3)³
g) 9x²-3xy+y-6x+1
h) x³-3x²y+3xy²-y³-z³
Cần đáp án trc 3h chiều ( 29 /8 )
a: =(a^2-b^2)-(2a-2b)
=(a-b)(a+b)-2(a-b)
=(a-b)(a+b-2)
b: =(3x-3y)+5y(x-y)
=3(x-y)+5y(x-y)
=(x-y)(5y+3)
c: \(=\left(x+y\right)^2\left(x-y\right)+x\left(y-x\right)\)
=(x-y)*(x+y)^2-x(x-y)
=(x-y)[(x+y)^2-x]
d: \(=\left(x-y+4-2x-3y+1\right)\left(x-y+4+2x+3y-1\right)\)
=(-x-4y+5)(3x+2y+3)
e: =16-(x^2-4xy+4y^2)
=16-(x-2y)^2
=(4-x+2y)(4+x-2y)
g: =9x^2-6x+1-(3xy-y)
=(3x-1)^2-y(3x-1)
=(3x-1)(3x-y-1)
h: =(x-y)^3-z^3
=(x-y-z)[(x-y)^2+z(x-y)+z^2]
=(x-y-z)(x^2-2xy+y^2+xz-yz+z^2)
a) \(a^2-b^2-2a+2b\)
\(=\left(a^2-b^2\right)-\left(2a-2b\right)\)
\(=\left(a+b\right)\left(a-b\right)-2\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b-2\right)\)
b) \(3x-3y-5x\left(y-x\right)\)
\(=\left(3x-3y\right)+5x\left(x-y\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(5x+3\right)\left(x-y\right)\)
c) \(x\left(x+y\right)^2-y\left(x+y\right)^2+xy-x^2\)
\(=\left(x+y\right)^2\left(x-y\right)+\left(xy-x^2\right)\)
\(=\left(x+y\right)^2\left(x-y\right)-x\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+2xy+y^2-x\right)\)
d) \(\left(x-y+4\right)^2-\left(2x+3y-1\right)\)
\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-3y+1\right)\)
\(=\left(3x+2y+3\right)\left(-x-4y+5\right)\)
Tìm các số nguyên x,y thoả mãn: 3xy+x-3y\(3xy+x-3y=5\)
\(3xy+x-3y=5\\ \Rightarrow x\left(3y+1\right)-3y-1=5-1\\ \Rightarrow x\left(3y+1\right)-\left(3y-1\right)=4\\ \Rightarrow\left(x-1\right)\left(3y-1\right)=4\)
Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-1,3y-1\in Z\\x-1,3y-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\end{matrix}\right.\)
Ta có bảng:
x-1 | 1 | 2 | 4 | -1 | -2 | -4 |
3y-1 | 4 | 2 | 1 | -4 | -2 | -1 |
x | 2 | 3 | 5 | 0 | -1 | -3 |
y | \(\dfrac{5}{3}\left(loại\right)\) | 1 | \(\dfrac{2}{3}\left(loại\right)\) | -1 | \(-\dfrac{1}{3}\left(loại\right)\) | 0 |
Vậy \(\left(x,y\right)\in\left\{\left(3;1\right);\left(0;-1\right);\left(-3;0\right)\right\}\)
tìm x,y thộc Z biết
x/15=3/y và x<y,0
Ta có: \(\frac{x}{15}=\frac{3}{y}\Rightarrow xy=45=1.45=3.15=5.9=\left(-1\right).\left(-45\right)=\left(-3\right).\left(-15\right)=\left(-5\right).\left(-9\right)\)
Mà x < y và x < 0
=> x < y < 0
=> ( x; y ) \(\in\){ ( -45; -1) ; ( -15; -3) ; (-9; -5) }
Tìm x, y thuộc Z:
a) x^2+xy+y^2=2x+y
b) x^2+xy+y^2=x+y
c) x^2-3xy+3y^2=3y
d) x^2-2xy+5y^2=y+1
e) 3x-xy+y^2=3
f) 3x+317=5x^2
g) x^2=4^y+5
tìm x,y thộc Z: x/4-3/2=2/y
Các bạn giúp mình vs.Mai phải nộp bài rồi