Chứng minh nếu 6x + 11y chia hết cho 31 thì x + 7y cũng chia hết cho 31 với mọi x và y
Cho x,y thuộc Z. Chứng tỏ rằng nếu 6x + 11y chia hết cho 31 thì x + 7y cũng chia hết cho 31.
Ngược lại x + 7y chia hết cho 31 thì 6x + 11y cũng chia hết cho 31.
a:
6x+11y chia hết cho 31
=>6x+11y+31y chia hết cho 31
=>6x+42y chia hết cho 31
=>x+7y chia hết cho 31
b: x+7y chia hết cho 31
=>6x+42y chia hét cho 31
=>6x+11y chia hết cho 31
chứng minh rằng nếu 6x +11y chia hết cho 31 và x, y thuộc Z thì x+ 7y cũng chia hết cho 31
6x+11y chia hết cho 31
=>6(6x+11y) chia hết cho 31
=>36x+66y chia hết cho 31
=>31x+31y+5x+35y chia hết cho 31
Vì 31(x+y) chia hết cho 31=>5(x+7y) chia hết cho 31
Mà ƯCLN(5;31)=1=>x+7y chia hết cho 31
x+7y chia hết cho 31
=>6(x+7y) chia hết cho 31
=>6x+42y chia hết cho 31
=>6x+11y+31y chia hết cho 31
Vì 31y chia hết cho 31=>6x+11y chia hết cho 31
Ta xét : P= \(6\left(x+7y\right)-\left(6x+11y\right)\)=\(6x+42y-6x-11y\)=\(31y⋮31\)
Mặt khác: \(6x+11y⋮31\)
=> \(6\left(x+7y\right)⋮31\)(1)
Mà \(ƯCLN_{\left(6;31\right)}=1\)(2)
Từ (1)(2)=> x+7y chia hết cho 11(đpcm)
Ta xét: P=\(6\left(x+7y\right)-\left(6x+11y\right)\)=\(6x+42y-6x-11y\)=\(31y⋮31\)
Mặt khác: \(6x+11y⋮31\)
=> \(6\left(x+7y\right)⋮31\)(1)
Mà \(ƯCLN_{\left(6;31\right)}=1\left(2\right)\)
Từ (1)(2)=> x+7y chia hết cho 31(đpcm)
Cho x,y thuộc Z. CMR nếu 6x+11y chia hết cho 31 thì x+ 7y cũng chia hết cho 31. Ngược lại x+7y chia hết cho 31 thì 6x+ 11y cũng chia hết cho 31
6x+11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)
=> 6x + 42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên x+7y buộc phải chia hết cho 31 (ĐPCM)
6x+11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)
=> 6x + 42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên x+7y buộc phải chia hết cho 31 (ĐPCM)
6x+11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)
=> 6x + 42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên x+7y buộc phải chia hết cho 31 (ĐPCM)
cho x,y\(\in\) Z. Chứng tỏ rằng nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31. Ngược lại x+7y chia hết cho 31 thì 6x+11y cũng chia hết cho 31
cho x,y thuộc Z.Chứng tỏ rằng nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31.Ngược lại x+7y chia hết cho 31 thì 6x+11y cũng chia hết cho 31
\(6x+11y⋮31\Rightarrow6x+11y+31y=6x+42y=6\left(x+7y\right)⋮31\Rightarrow x+7y⋮31\)
\(x+7y⋮31\Rightarrow6\left(x+7y\right)⋮31\Rightarrow6\left(x+7y\right)-31y=6x+11y⋮31\)
Chứng minh rằng nếu 6x + 11y chia hết cho 31 với mọi x, y thuộc z thì x + 7y cũng chia hết cho 31.
giúp mình 3 câu ấy nhé!
Ta có 6x+11y chia hết cho 31
<=>6x+(11y+31y) chia hết cho 31( 31y chia hết cho 31)
<=>6x+42y chia hết cho 31
<=>6.(x+7y) chia hết cho 31
Ta có (6;31)=1
=> x+7y chia hết cho 31(đpcm)
Chứng tỏ: Nếu 6x + 11y chia hết cho 31 thì x + 7y cũng chia hết cho 31 với x, y là các số nguyên
có :
6(x + 7y) = 6x + 42y
= 6x + 11y + 31y
6x + 11y chia hết cho 31
31y chia hết cho 31
=> 6(x + 7y) chia hết cho 31 vì 6 không chia hết cho 31
=> x + 7y chia hết cho 31
Ta có : 6 . ( x + 7y ) = 6x + 42y = 6x + 11y + 31y
=> 6x + 11y chia hết cho 31
31y chia hết cho 31 => 6 . ( x + 7y ) cũng chia hết cho 31 vì 6 không chia hết cho 31.
=> x + 7y chia hết cho 31.
Chứng tỏ: nếu 6x + 11y chia hết cho 31 thì x+7y cũng chia hết cho 31 với x,y là các số nguyên.
6(6x+11y)-5(x+7y)
=36x+66y-5x-35y=31x+31y =31(x+y) chia hết 31
Nếu 6(6x+11y) chia hết cho 31 thì 6x+11y chia hết 31
mà (6;5)=1 => x+7y chia hết cho 31
Nếu 5(x+7y) thì x+7y chia hết cho 31
mà (6;5)=1 => 6x +11y chia hết cho 31
Vậy........
Học tốt
Ta có : 6x + 11y \(⋮\)31
=> 7(6x + 11y) \(⋮\)31
=> 42x + 77y \(⋮\)31
=> 31x + (11x + 77y) \(⋮\)31
=> 31x + 11(x + 7y) \(⋮\)31
Vì \(\hept{\begin{cases}31x+11\left(x+7y\right)⋮31\\31x⋮31\end{cases}}\)=> 31x + 11(x + 7y) - 31x \(⋮\)31
=> 11(x + 7y) \(⋮\)31
=> x + 7y \(⋮\)31 (đpcm)
Cho x;y thuộc z
CMR nếu 6x+11y chia hết cho 31 thi x+7y cùng chia hết cho 31. Ngược lại nếu x+7y chia hết cho 31 thì 6x+11y cũng chia hết cho 31