A=7^2022-7^2021+7^2020-7^3019+............+7^2-7
tính tổng sau : 7^2022-7^2021+7^2020-7^2019+...+7^2-7
\(A=7^{2022}-7^{2021}+7^{2020}-7^{2019}+...+7^2-7\)
\(\Rightarrow7A=7^{2023}-7^{2022}+7^{2021}-...+7^3-7^2\)
\(\Rightarrow8A=A+7A=7^{2022}-7^{2021}+...+7^2-7+7^{2023}-7^{2022}+...+7^3-7^2=7^{2023}-7\)
\(\Rightarrow A=\dfrac{7^{2023}-7}{8}\)
tính :
A= 1+2-3-4+5+6-7-8+9+...+2018-2019-2020+2021-2022
A = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... + 2018 – 2019 - 2020 + 2021
A = (1 + 2 - 3 - 4) + ... + (2017 + 2018 – 2019 - 2020) + 2021
A = (-4) + ... + (-4) + 2021 +
2020 : 4 = 505
A = (-4) . 505 + 2021
A = (-2020) + 2021
A = 1
Vậy A=1
Mình gửi bạn nha !!!!!
1+2-3-4+5-6-7-8+...-2019-2020+2021+2022
=1+(2-3-4+5)+(6-7-8+9)+.....+(2018-2019-2020+2021)+2022
=1+0+0+.....+0+2022
=2023
số năm nay luôn
1+2-3-4+5+6-7-8-....-2019-2020+2021+2022 help
Ta có: 1+2-3-4+5+6-7-8+.....-2019-2020+2021+2022
=1+(2-3-4+5)+(6-7-8+9)+.....+(2018-2019-2020+2021)+2022
=1+0+0+.....+0+2022
=2023
B = 1 - 2 - 3 + 4 - 5 - 6 +7-8- 9 +...+ 2020 - 2021 - 2022
giúp mk, please :)
\(\dfrac{\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{2022}}{2017+\dfrac{2016}{6}+\dfrac{2015}{7}+...+\dfrac{1}{2021}}\)
A. \(\dfrac{1}{2020}\)
B. \(\dfrac{1}{2021}\)
C. \(\dfrac{1}{2019}\)
D. \(\dfrac{1}{2022}\)
chọn ra 3 ngừi nhanh nhứt:>>
giải thích cho những ng ko hỉu ;-;
\(=\dfrac{\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{2022}}{\left(\dfrac{2016}{6}+1\right)+\left(\dfrac{2015}{7}+1\right)+...+\left(\dfrac{1}{2021}+1\right)+1}\)
\(=\dfrac{\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{2022}}{\dfrac{2022}{6}+\dfrac{2022}{7}+...+\dfrac{2022}{2021}+\dfrac{2022}{2022}}\)
\(=\dfrac{\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{2022}}{2022.\left(\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{2022}\right)}=\dfrac{1}{2022}\)
1-2-3+4+5-6-7+8+...+2018-2019-2020+2021+2022-2023
Sửa đề: 1-2-3+4+5-6-7+8+...-2018-2019+2020+2021-2022-2023
=(1-2-3+4)+(5-6-7+8)+...+(2017-2018-2019+2020)+(2021-2022-2023)
=0+0+...+0+(-1-2023)
=-2024
Tính A = 7 mũ 2024 - 7 mũ 2023 + 7 mũ 2022 - 7 mũ 2021 + ... + 7 mũ 2 - 7
\(A=7^{2024}-7^{2023}+7^{2022}-7^{2021}+...+7^2-7\)
=>\(7A=7^{2025}-7^{2024}+7^{2023}-7^{2022}+...+7^3-7^2\)
=>\(7A+A=7^{2025}-7^{2024}+7^{2023}-7^{2022}+...+7^3-7^2+7^{2024}-7^{2023}+...+7^2-7\)
=>\(8A=7^{2025}-7\)
=>\(A=\dfrac{7^{2025}-7}{8}\)
So sánh A và B
A=\(\dfrac{4-7^{2020}}{7^{2020}}\)+\(\dfrac{5+7^{2021}}{7^{2021}}\)
B=\(\dfrac{1}{7^{2019}}\)
Ta có:
\(A=\dfrac{7\left(4-7^{2020}\right)}{7^{2021}}+\dfrac{5+7^{2021}}{7^{2021}}\)
\(A=\dfrac{28-7^{2021}+5+7^{2021}}{7^{2021}}=\dfrac{33}{7^{2021}}\)
Ta có: \(B=\dfrac{7^2}{7^{2021}}=\dfrac{49}{7^{2021}}\)
=> B>A