phân tích đa thức thành nhân tử
a, x^2-4x+3
b, x^2+5x+4
c, x^2-x-6
d, x^4+4
Phân tích đa thức 8𝑥 3 -1 thành nhân tử
A.(2𝑥 − 1)(4𝑥 2+2x+1)
B.(2𝑥 + 1)(4𝑥 2+2x+1)
C.(2𝑥 − 1)(4𝑥 2 - 2x+1)
D.(2𝑥 − 1)(4𝑥 2+4x+1)
Câu 17 Phân tích đa thức 5x2 -4x +10xy-8y thành nhân tử
A..(5x-4)(x-2y)
B. (x+2y)(5x-4)
C.(5x-2y)(x+4y)
D.(5x+4)(x-2y)
Câu 18 Phân tích đa thức 8x3 + 12x2y + 6xy2 + y3 thành nhân tử :
A. (2x + y)3
B.(2x - y)3
C. (2x + y3 ) 3
D. (2x3 + y)3
Câu 19 Tìm x, biết (x + 2) . ( x – 1 ) – x 2 = –1
A. x = –2 4
B. x = 2
C. x = 1
D. x = –1
Câu 20 Tìm x biết x . ( x – 3) = x2 + 6
A. x = 2
B. x = –2
C. x = 4
D. x = 6
Câu 21 Tìm x biết : (𝑥 + 3)(𝑥 − 3) − 𝑥(𝑥 − 3) =0
A. x = 3.
B. x= -3
C. x=1
D. x=0
\(16,A\\ 17,C\\ 18,A\\ 19,C\\ 20,A\\ 21,A\)
Phân tích các đa tử sau thành nhân tử
a. 15x^2 – 5x^3
b. 8x^3 +4x^2y – y^3 – 2xy^2
c. x^8 + 64y^4
a: \(15x^2-5x^3=5x^2\left(3-x\right)\)
b: \(8x^3-y^3+4x^2y-2xy^2\)
\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)+2xy\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x^2+4xy+y^2\right)\)
\(=\left(2x-y\right)\left(2x+y\right)^2\)
c: Ta có: \(x^8+64y^4\)
\(=x^8+16x^4y^2+64y^4-16x^4y^2\)
\(=\left(x^4+8y^2\right)^2-\left(4x^2y\right)^2\)
\(=\left(x^2-4x^2y+8y^2\right)\left(x^2+4x^2y+8y^2\right)\)
bài 1:phân tích đa thức thành nhân tử
a,x4 +5x2 +9
b,x4 + 3x2 +4
c,2x4 - x2 -1
Bài 2:tìm x biết
a,(x+1) (x+2)(x+3)(x+4)= 120
b,(x-4x+3)(x2+6x +8) +24
Bài 1:
\(a,x^4+5x^2+9\\=(x^4+6x^2+9)-x^2\\=[(x^2)^2+2\cdot x^2\cdot3+3^2]-x^2\\=(x^2+3)^2-x^2\\=(x^2+3-x)(x^2+3+x)\)
\(b,x^4+3x^2+4\\=(x^4+4x^2+4)-x^2\\=[(x^2)^2+2\cdot x^2\cdot2+2^2]-x^2\\=(x^2+2)^2-x^2\\=(x^2+2-x)(x^2+2+x)\)
\(c,2x^4-x^2-1\\=2x^4-2x^2+x^2-1\\=2x^2(x^2-1)+(x^2-1)\\=(x^2-1)(2x^2+1)\\=(x-1)(x+1)(2x^2+1)\)
Bài 2:
\(a,\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=120\)
\(\Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\cdot\left[\left(x+2\right)\left(x+3\right)\right]=120\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=120\) (1)
Đặt \(x^2+5x+5=y\), khi đó (1) trở thành:
\(\left(y-1\right)\left(y+1\right)=120\)
\(\Leftrightarrow y^2-1=120\)
\(\Leftrightarrow y^2=121\)
\(\Leftrightarrow\left[{}\begin{matrix}y=11\\y=-11\end{matrix}\right.\)
+, TH1: \(y=11\Leftrightarrow x^2+5x+5=11\)
\(\Leftrightarrow x^2+5x-6=0\)
\(\Leftrightarrow x^2-x+6x-6=0\)
\(\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-6\end{matrix}\right.\left(\text{nhận}\right)\)
+, TH2: \(y=-11\Leftrightarrow x^2+5x+5=-11\)
\(\Leftrightarrow x^2+5x+16=0\)
\(\Leftrightarrow\left[x^2+2\cdot x\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]-\dfrac{25}{4}+16=0\)
\(\Leftrightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)
Ta thấy: \(\left(x+\dfrac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}\ge\dfrac{39}{4}>0\forall x\)
Mà \(\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)
\(\Rightarrow\) loại
Vậy \(x\in\left\{1;-6\right\}\).
\(b,\) Đề thiếu vế phải rồi bạn.
phân tích đa thức thành nhân tử
a)x^3+5x^2+5x+1
b)x^2(x^2+2y^2)-3y^4
a: \(=\left(x+1\right)\left(x^2-x+1\right)+5x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+4x+1\right)\)
bài 1 phân tích đa thức thành nhân tử
a)3x(x-7)+2xy-14y
b)9(2x-5)^2+15x-6x^2
c)6x^2 -12x+6
d)-20x^2+60xy-45y^2
e)2xy^3-16x^4
f)3x^4-48
g)x^2-z^2+4xy+4y^2
h)x^2-z^2+2xy-6zt+y^2-9t^2
baif2 pt đa thức thanhhf nhân tử
a)x^2-12x+20
b)2x^2-x-15
c)x^3-x^2+x-1
d)2x^3-5x-6
e)4y^4+1
f)x^7+x^5+x^3
g)(x^2+x)^2-5(x^2+x)+6
h)(x^2+2x)^2-2(x+1)^2-1
i)x^2+4xy+4y^2-4(x+2y)+3
j)x(x+1)(x+2)(x+3)-3
2:
a: \(x^2-12x+20\)
\(=x^2-2x-10x+20\)
=x(x-2)-10(x-2)
=(x-2)(x-10)
b: \(2x^2-x-15\)
=2x^2-6x+5x-15
=2x(x-3)+5(x-3)
=(x-3)(2x+5)
c: \(x^3-x^2+x-1\)
=x^2(x-1)+(x-1)
=(x-1)(x^2+1)
d: \(2x^3-5x-6\)
\(=2x^3-4x^2+4x^2-8x+3x-6\)
\(=2x^2\left(x-2\right)+4x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(2x^2+4x+3\right)\)
e: \(4y^4+1\)
\(=4y^4+4y^2+1-4y^2\)
\(=\left(2y^2+1\right)^2-\left(2y\right)^2\)
\(=\left(2y^2+1-2y\right)\left(2y^2+1+2y\right)\)
f; \(x^7+x^5+x^3\)
\(=x^3\left(x^4+x^2+1\right)\)
\(=x^3\left(x^4+2x^2+1-x^2\right)\)
\(=x^3\left[\left(x^2+1\right)^2-x^2\right]\)
\(=x^3\left(x^2-x+1\right)\left(x^2+x+1\right)\)
g: \(\left(x^2+x\right)^2-5\left(x^2+x\right)+6\)
\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-3\left(x^2+x\right)+6\)
\(=\left(x^2+x\right)\left(x^2+x-2\right)-3\left(x^2+x-2\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x-3\right)\)
\(=\left(x^2+x-3\right)\left(x+2\right)\left(x-1\right)\)
h: \(\left(x^2+2x\right)^2-2\left(x+1\right)^2-1\)
\(=\left(x^2+2x+1-1\right)^2-2\left(x+1\right)^2-1\)
\(=\left[\left(x+1\right)^2-1\right]^2-2\left(x+1\right)^2-1\)
\(=\left(x+1\right)^4-2\left(x+1\right)^2+1-2\left(x+1\right)^2-1\)
\(=\left(x+1\right)^4-4\left(x+1\right)^2\)
\(=\left(x+1\right)^2\left[\left(x+1\right)^2-4\right]\)
\(=\left(x+1\right)^2\left(x+1+2\right)\left(x+1-2\right)\)
\(=\left(x+1\right)^2\cdot\left(x+3\right)\left(x-1\right)\)
i: \(x^2+4xy+4y^2-4\left(x+2y\right)+3\)
\(=\left(x+2y\right)^2-4\left(x+2y\right)+3\)
\(=\left(x+2y\right)^2-\left(x+2y\right)-3\left(x+2y\right)+3\)
\(=\left(x+2y\right)\left(x+2y-1\right)-3\left(x+2y-1\right)\)
\(=\left(x+2y-1\right)\left(x+2y-3\right)\)
j: \(x\cdot\left(x+1\right)\left(x+2\right)\left(x+3\right)-3\)
\(=\left(x^2-3x\right)\left(x^2-3x+2\right)-3\)
\(=\left(x^2-3x\right)^2+2\left(x^2-3x\right)-3\)
\(=\left(x^2-3x+3\right)\left(x^2-3x-1\right)\)
Bài 5. Phân tích các đa thức thành nhân tử
a) (x2-4x)2-8(x2-4x)+15 b) (x2+2x)2+9x2+18x+20
c) ( x+1)(x+2)(x+3)(x+4)-24 d) (x-y+5)2-2(x-y+5)+1
Bài 6. Phân tích các đa thức thành nhân tử
a) x2y+x2-y-1 b) (x2+x)2+4(x2+x)-12
c) (6x+5)2(3x+2)(x+1)-6
Phân tích đa thức sau thành nhân tử
a, \(2^3\)+ 4\(^2\)+6x
b,x\(^2\)-4
c,x\(^2\)-10+25
d,x\(^3\)-4
e,x\(^2\)+xy-3x-3y
g,x\(^2\)-y\(^2\)-4x+4
Giup mk vs ạ bạn nào nhanh mk sẽ vote ạ
Đề bạn có mấy chỗ thiếu mk bổ sung nha
\(a,2^3+4^2+6x=8+16+6x=6x+24=x\left(x+4\right)\\ b,x^2-4=\left(x-2\right)\left(x+2\right)\\ c,x^2-10x+25=\left(x-5\right)^2\\ d,x^3-4x=x\left(x^2-4\right)=x\left(x-2\right)\left(x+2\right)\\ e,x^2+xy-3x-3y=x\left(x+y\right)-3\left(x+y\right)=\left(x-3\right)\left(x+y\right)\\ g,x^2-y^2-4x+4=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\)
Tick plzz
a: Ta có: \(2x^3+4x^2+6x\)
\(=2x\left(x^2+2x+3\right)\)
b: \(x^2-4=\left(x-2\right)\left(x+2\right)\)
c: \(x^2-10x+25=\left(x-5\right)^2\)
d: \(x^3-4x=x\left(x-2\right)\left(x+2\right)\)
e: \(x^2+xy-3x-3y\)
\(=x\left(x+y\right)-3\left(x+y\right)\)
\(=\left(x+y\right)\left(x-3\right)\)
g: \(x^2-4x+4-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-y-2\right)\left(x+y-2\right)\)
Phân tích đa thức sau thành nhân tử
a)x^4 +64
b)81x^4+4y^4
c)x^5+x-1
d)x^7-x^2-1
giúp mk vs ah !!!!
a) Ta có: \(x^4+64\)
\(=x^4+16x^2+64-16x^2\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)
b) Ta có: \(81x^4+4y^4\)
\(=81x^4+36x^2y^2+4y^4-36x^2y^2\)
\(=\left(9x^2+2y^2\right)^2-\left(6xy\right)^2\)
\(=\left(9x^2-6xy+2y^2\right)\left(9x^2+6xy+2y^2\right)\)
c) Ta có: \(x^5+x+1\)
\(=x^5+x^2-x^2+x-1\)
\(=x^2\left(x^3+1\right)-\left(x^2-x+1\right)\)
\(=x^2\left(x+1\right)\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3+x^2-1\right)\)
Phân tích đa thức thành nhân tử
a) \(5x-y+ax-ay\)
b) \(a^3-a^2x-ay+xy\)
c) \(4x^2-y^2+4x+1\)
d) \(x^4+2x^3+x^2\)
e) \(5x^2-10xy+5y^2-5z^2\)
a Đề sai: )
b
\(a^3-a^2x-ay+xy\\ =a^2\left(a-x\right)-y\left(a-x\right)\\ =\left(a-x\right)\left(a^2-y\right)\)
c
\(4x^2-y^2+4x+1\\ =\left(2x\right)^2+2.2x.1+1-y^2\\ =\left(2x+1\right)^2-y^2\\ =\left(2x+1-y\right)\left(2x+1+y\right)\)
d
\(x^4+2x^3+x^2\\ =x^4+x^3+x^3+x^2\\ =x^3\left(x+1\right)+x^2\left(x+1\right)\\ =\left(x^3+x^2\right)\left(x+1\right)\)
e
\(5x^2-10xy+5y^2-5z^2\\ =5\left(x^2-2xy+y^2-z^2\right)\\ =5\left[\left(x-y\right)^2-z^2\right]\\ =5\left(x-y-z\right)\left(x-y+z\right)\)
c: =(2x+1)^2-y^2
=(2x+1+y)(2x+1-y)
d: =x^2(x^2+2x+1)
=x^2(x+1)^2
e: =5(x^2-2xy+y^2-z^2)
=5[(x-y)^2-z^2]
=5(x-y-z)(x-y+z)
Phân tích đa thức thành nhân tử
a, 4x\(^2\)-20x+25
b, x\(^3\)-x
c, x\(^3\)-27y\(^3\)
d, 5x\(^2\)-5xy+y-x
a. (2x - 5)2
b. x(x2 - 1) = x(x - 1)(x + 1)
c. (x - 3)(x2 + 3x + 9)
d. 5x(x - y) + (x - y) = (x - y)(5x + 1)