a) 16 + 4x = 2 : 2
Bài 1: Rút gọn biểu thức:
a) A = \(\left(\frac{1}{x^2-4x}+\frac{2}{16-x^2}+\frac{4}{4x+16}\right):\frac{1}{4x}\)
\(A=\left(\dfrac{1}{x^2-4x}+\dfrac{2}{16-x^2}+\dfrac{4}{4x+16}\right):\dfrac{1}{4x}\left(x\ne4;x\ne-4;x\ne0\right).\)
\(A=\left(\dfrac{1}{x\left(x-4\right)}+\dfrac{-2}{\left(x+4\right)\left(x-4\right)}+\dfrac{1}{x+4}\right).4x\).
\(A=\dfrac{x+4-2x+x^2-4x}{x\left(x-4\right)\left(x+4\right)}.4x.\)
\(A=\dfrac{x^2-5x+4}{\left(x-4\right)\left(x+4\right)}.4.\)
\(A=\dfrac{\left(x-4\right)\left(x-1\right)}{\left(x-4\right)\left(x+4\right)}.4.\)
\(A=\dfrac{4\left(x-1\right)}{x+4}.\)
P=(1/ax-2 + 1/ax+2 +2ax/a^2x^2+4 + 4a^3x^3/a^4x^4+16) a^4x^4+16/a^4x^4
Rút gọn P
Tính P biết a^2+4/x^2=a^2/9
Không ai trả lời luôn
rút gọn (a^2-1)(a^2-a+1)(a^2+a+1)
tìm x : (4x+1)(16^2-4x+1)-16x(4x^2-5)=17
rút gọn (a^2-1)(a^2-a+1)(a^2+a+1)
tìm x : (4x+1)(16^2-4x+1)-16x(4x^2-5)=17
Giúp tui với!!
Rút gọn rồi tính giá trị của các biểu thức sau:
a) A= \(\sqrt{a^2-8a+16}-3a\) với a = -3
b) B=\(\sqrt{1-4x+4x^2}-2x\) với \(x=\frac{-3}{2}\)
c) C=\(\frac{\sqrt{4x^2-4x+1}}{x^2-16}.\left(x^2-8x+16\right)\) với x = 7
a/ \(A=\sqrt{\left(a-4\right)^2}-3a=\left|a-4\right|-3a\)
+) với a<4: A = 4-a-3a=4-4a
+)với a≥4: A = a-4-3a=-2a - 4
Với a = -3 <4 => A = 4 - 4 . (-3) = 16
b/ \(B=\sqrt{\left(1-2x\right)^2}-2x=\left|1-2x\right|-2x\)
+) nếu x \(\le\frac{1}{2}\) :
\(B=1-2x-2x=-4x+1\)
+) nếu \(x>\frac{1}{2}:B=2x-1-2x=-1\)
với \(x=-\frac{3}{2}< \frac{1}{2}\Rightarrow B=-4\cdot\left(-\frac{3}{2}\right)+1=7\)
c/đk: \(x\ne\pm4\)
\(C=\frac{\sqrt{\left(2x-1\right)^2}}{\left(x-4\right)\left(x+4\right)}\cdot\left(x-4\right)^2=\frac{\left|2x-1\right|\cdot\left(x-4\right)}{x+4}\)
+) nếu \(x\ge\frac{1}{2}:B=\frac{\left(2x-1\right)\left(x-4\right)}{x+4}\)
+) nếu \(x< \frac{1}{2}:B=\frac{-\left(2x-1\right)\left(x-4\right)}{x+4}\)
Với \(x=7\left(>\frac{1}{2}\right):B=\frac{\left(2\cdot7-1\right)\cdot\left(7-4\right)}{7+4}=\frac{39}{11}\)
Cho biểu thức A = \(\left(\dfrac{4x}{x+2}-\dfrac{x^3-8}{x^3+8}.\dfrac{4x^2-8x+16}{x^2-4}\right):\dfrac{16}{x^2-x-6}\)
a) Rút gọn A
b) Tìm x để A < 0
c) Tìm x để A ≥ 5
a) (3-4x)^2 = 16(x-3)^2
b) (x^2+x+1)^2 =(4x-1)^2
a) 3-4x = 4.(x-3) hoặc 3-4x = -4.(x-3)
3-4x=4x-12 hoặc 3-4x = -4x +12
8x=15 hoặc -4x+4x=12-3
x=15/8
b) x^2+x+1=4x-1 hoặc x^2+x+1= -(4x-1)
x^2-3x+2=0 hoặc x^2+5x=0
TH1: x^2-3x+2=0
x^2-x-2x+2=0
(x^2-x)-(2x-2)=0
x(x-1)-2(x-1)=0
(x-1).(x-2)=0
x=1 hoặc x=2
TH2: x^2+5x=0
x.(x+5)=0
x=0 hoặc x=-5
Các bạn tự đáp số nhé
a,(3-4x)^2=16(x-3)^2
b,(x^2+x+1)^2=(4x-1)^2
Lời giải:
a)
$(3-4x)^2=16(x-3)^2=4^2(x-3)^2=(4x-12)^2$
$\Leftrightarrow [(3-4x)-(4x-12)][(3-4x)+(4x-12)]=0$
$\Leftrightarrow (15-8x)(-9)=0$
$\Rightarrow 15-8x=0\Rightarrow x=\frac{15}{8}$
b)
$(x^2+x+1)^2=(4x-1)^2$
$\Leftrightarrow (x^2+x+1)^2-(4x-1)^2=0$
$\Leftrightarrow (x^2+x+1-4x+1)(x^2+x+1+4x-1)=0$
$\Leftrightarrow (x^2-3x+2)(x^2+5x)=0$
$\Leftrightarrow (x-1)(x-2)x(x+5)=0$
\(\Rightarrow \left[\begin{matrix} x-1=0\\ x-2=0\\ x=0\\ x+5=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=1\\ x=2\\ x=0\\ x=-5\end{matrix}\right.\)
a) 9 - 24x + 16x2 = 16(x2 - 6x + 9)
=> 16x2 - 24x + 9 = 16x2 - 96x + 144
=> -24x + 96x = 144 - 9
=> 72x = 135
=> x = \(\frac{15}{8}\)
b) (x2 + x + 1)2 = (4x - 1)2
=> x4 + x2 + 1 + 2x3 + 2x + 2x2 = 16x2 - 8x + 1
=> x4 + 2x3 + 3x2 + 2x + 1 = 16x2 - 8x + 1
=> x4 + 2x3 - 13x2 + 10x = 0
=> x4 - x3 + 3x3 - 3x2 - 10x2 + 10x = 0
=> (x3 + 3x2 - 10x)(x - 10) = 0
=> x(x2 + 3x - 10)(x - 10) = 0
=> x(x - 2)(x+5)(x-10) = 0
=> \(\left[{}\begin{matrix}x=0\\x=2\\x=-5\\x=10\end{matrix}\right.\)
click cho mình nha
a) √x^2-2x+4 = 2x - 2 b) √x^2-6x+9+x = 13 c) √x^2-3x +2 = √x-1 d) √x^2-4x+4 = ✓4x^2 e) 4x^2-4x+1 = √x-8x+16
a) \(\sqrt[]{x^2-2x+4}=2x-2\)
\(\Leftrightarrow\sqrt[]{x^2-2x+4}=2\left(x-1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x-1\right)\ge0\\x^2-2x+4=4\left(x-1\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x^2-2x+4=4x^2-8x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\3x^2-6x=0\end{matrix}\right.\) \(\left(1\right)\)
Giải pt \(3x^2-6x=0\)
\(\Leftrightarrow3x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=2\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x=2\)
c) \(\sqrt{x^2-3x+2}=\sqrt[]{x-1}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x^2-3x+2=x-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2-4x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x=1\cup x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)