giải hpt:\(\sqrt{\text{x^2 + x + y + 1}+x}-x+\sqrt{\text{y^2 + x + y + 1 }}-y=2\)
\(\sqrt{\text{x^2 + x + y + 1}}-x+\sqrt{\text{y^2 + x + y + 1}-y=2}\)
Giải hệ phương trình
\(\begin{cases} x.\sqrt[\text{2}]{\text{1-$y^{2}$}}+y.\sqrt[\text{2}]{\text{1-$x^{2}$}} (1)\\ x+y=1 (2) \end{cases} \)
\begin{cases}
x.\sqrt[\text{2}]{\text{1-$y^{2}$}}+y.\sqrt[\text{2}]{\text{1-$x^{2}$}} (1)\\
x+y=1 (2)
\end{cases}
Giải hệ phương trình
\(\begin{cases} x.\sqrt[\text{2}]{\text{1-$y^{2}$}}+y.\sqrt[\text{2}]{\text{1-$x^{2}$}} (1)\\ x+y=1 (2) \end{cases} \)
ủa giải gì vậy bạn ????????????????????????????????????????
Mình gửi đề ạ, chứ sao trên đó nó không hiện đề
\(\begin{cases} x.\sqrt[\text{2}]{\text{1-$y^{2}$}}+y.\sqrt[\text{2}]{\text{1-$x^{2}$}} (1)\\ x+y=1 (2) \end{cases} \)
\begin{cases}
x.\sqrt[\text{2}]{\text{1-$y^{2}$}}+y.\sqrt[\text{2}]{\text{1-$x^{2}$}} (1)\\
x+y=1 (2)
\end{cases}
bạn tách từng câu ra mik suy nghĩ từng câu
Giải hệ phương trình
\begin{cases}
x.\sqrt[\text{2}]{\text{1-$y^{2}$}}+y.\sqrt[\text{2}]{\text{1-$x^{2}$}} (1)\\
x+y=1 (2)
\end{cases}
Hệ phương trình j z ???
Có phải đề thế này không ạ?
\(\hept{\begin{cases}x\sqrt{1-y^2}+y\sqrt{1-x^2}=?\left(1\right)\\x+y=1\left(2\right)\end{cases}}\)
Nếu vậy thì PT (1) thiếu vế phải rồi:))
giải hpt:1)\(\begin{cases}\text{x+y+xy(2x+y)=5xy }\\\text{x+y+xy(3x-y)=4xy}\end{cases}\)
2)\(\begin{cases}\left(2x+y+1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{cases}\)
3)\(\begin{cases}\sqrt{9x+\frac{y}{x}}+2.\sqrt{y+\frac{2x}{y}}=4\\\left(\frac{2x}{y^2}-1\right)\left(\frac{y}{x^2}-9\right)=18\end{cases}\)
1. \(\begin{cases}x+y+xy\left(2x+y\right)=5xy\\x+y+xy\left(3x-y\right)=4xy\end{cases}\) \(\Leftrightarrow\begin{cases}2y-x=1\\x+y+xy\left(2x+y\right)=5xy\end{cases}\) (trừ 2 vế cho nhau)
\(\Leftrightarrow\begin{cases}x=2y-1\\\left(2y-1\right)+y+\left(2y-1\right)y\left(4y-2+y\right)=5\left(2y-1\right)y\end{cases}\) \(\Leftrightarrow\begin{cases}x=2y-1\\10y^3-19y^2+10y-1=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=1\\y=1\end{cases}\)
Giải hệ pt:
1. \(\left\{{}\begin{matrix}2\text{x}^3+2\text{x}^2y-xy=y^2-x-y\\2\text{x}^3-xy+x^2=4\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{matrix}\right.\)
Giúp mình với ạ . Cảm ơn nhiều .
1)Giải hệ phương trình : \(\left\{{}\begin{matrix}\sqrt{2x-3}-\sqrt{y}\text{=}2x-6\\x^3+y^3+7xy\left(x+y\right)\text{=}8xy.\sqrt{2\left(x^2+y^2\right)}\end{matrix}\right.\)
2) Giải phương trình : \(\dfrac{2\sqrt{x}}{x-1}.x+6+\sqrt{x+2}\text{=}\sqrt{2-x}+3\sqrt{4-x^2}\)
1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)
Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)
\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)
\(P\ge4\sqrt{xy}\left(x+y\right)^2\)
Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\) (*)
Thật vậy, (*)
\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)
\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)
\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)
Áp dụng BĐT Cô-si, ta được:
VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)
Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\).
Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)
\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)
Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)
Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)
Giải hệ phương trình:
\(\hept{\begin{cases}\text{}\text{}\text{}\text{}\text{}\sqrt{x}+2\sqrt{x+3}=7-\sqrt{x^2+3}\\\sqrt{x+y}+\sqrt{7-y}=y^2-6y+13\end{cases}}\)
giải hpt:\(\left\{{}\begin{matrix}\dfrac{4}{x+y}+3\sqrt{4\text{x}-8}=14\\\dfrac{5-x-y}{x+y}-2\sqrt{x-2}=\dfrac{-5}{2}\end{matrix}\right.\)
<=>
2/(x+y)+3√(x-2)=7(*)
5/(x+y)-2√(x-2)=1-5/2=-3/2(**)
(*).5-(**).2
(15+4)√(x+2)=35+3=38
√(x-2)=2; x=6
2/(x+y)=1; => y=2-x=-4
(x,y)=(6,-4)