Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đăng Khoa
Xem chi tiết
Lê Thị Ngọc Huyền
Xem chi tiết
Quỳnh Chi
29 tháng 1 2020 lúc 20:16

ủa giải gì vậy bạn ????????????????????????????????????????

Khách vãng lai đã xóa
Lê Thị Ngọc Huyền
29 tháng 1 2020 lúc 20:26

Mình gửi đề ạ, chứ sao trên đó nó không hiện đề

\(\begin{cases} x.\sqrt[\text{2}]{\text{1-$y^{2}$}}+y.\sqrt[\text{2}]{\text{1-$x^{2}$}} (1)\\ x+y=1 (2) \end{cases} \)

Khách vãng lai đã xóa
Lê Thị Ngọc Huyền
29 tháng 1 2020 lúc 20:27

\begin{cases}

x.\sqrt[\text{2}]{\text{1-$y^{2}$}}+y.\sqrt[\text{2}]{\text{1-$x^{2}$}} (1)\\

x+y=1 (2)

\end{cases} 

Khách vãng lai đã xóa
Tran Quang Minh
Xem chi tiết
Đặng Minh Triều
17 tháng 6 2016 lúc 12:02

bạn tách từng câu ra mik suy nghĩ từng câu

Lê Thị Ngọc Huyền
Xem chi tiết
Vũ Nhược Ann
29 tháng 1 2020 lúc 20:30

đề bài lag ?!

Khách vãng lai đã xóa
Hoàng Hương Giang
29 tháng 1 2020 lúc 20:31

Hệ  phương trình j z ???
 

Khách vãng lai đã xóa
tth_new
29 tháng 1 2020 lúc 21:02

Có phải đề thế này không ạ?

\(\hept{\begin{cases}x\sqrt{1-y^2}+y\sqrt{1-x^2}=?\left(1\right)\\x+y=1\left(2\right)\end{cases}}\)

Nếu vậy thì PT (1) thiếu vế phải rồi:))

Khách vãng lai đã xóa
Phương Anh
Xem chi tiết
Hồng Trinh
22 tháng 5 2016 lúc 22:19

1. \(\begin{cases}x+y+xy\left(2x+y\right)=5xy\\x+y+xy\left(3x-y\right)=4xy\end{cases}\) \(\Leftrightarrow\begin{cases}2y-x=1\\x+y+xy\left(2x+y\right)=5xy\end{cases}\) (trừ 2 vế cho nhau)

\(\Leftrightarrow\begin{cases}x=2y-1\\\left(2y-1\right)+y+\left(2y-1\right)y\left(4y-2+y\right)=5\left(2y-1\right)y\end{cases}\) \(\Leftrightarrow\begin{cases}x=2y-1\\10y^3-19y^2+10y-1=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=1\\y=1\end{cases}\)

Phương Anh
23 tháng 5 2016 lúc 14:24

mk ra câu 1 r b lm giúp mk câu 2,3 đc k

 

Dương Thị Ngọc
Xem chi tiết
Nguyễn thành Đạt
Xem chi tiết
Lê Song Phương
3 tháng 9 2023 lúc 22:03

1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)

Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)

\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)

\(P\ge4\sqrt{xy}\left(x+y\right)^2\)

Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\)  (*)

Thật vậy, (*)

\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)

\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)

\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)

Áp dụng BĐT Cô-si, ta được:

VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)

Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\)

Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)

\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)

 Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)

Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)

Nhạt
Xem chi tiết
Trần Thu Trang
Xem chi tiết
ngonhuminh
28 tháng 5 2018 lúc 13:18

<=>

2/(x+y)+3√(x-2)=7(*)

5/(x+y)-2√(x-2)=1-5/2=-3/2(**)

(*).5-(**).2

(15+4)√(x+2)=35+3=38

√(x-2)=2; x=6

2/(x+y)=1; => y=2-x=-4

(x,y)=(6,-4)