phân tích x^4-x^3-2x-4 thành nhân tử biết rằng có một nhân tử là x^2+dx+2
phân tích đa P(x)=x^4-x^3-2x-4 thức thành nhân tử, biết rằng một nhân tử có dạng x^2+dx+2
phân tích đa thức P(x)=x4-x3-2x-4 thành nhân tử biết rằng nhân tử có dạng x2+dx+2
Đơn giản thôi :]>
Sau khi phân tích thì P(x) có dạng ( x2 + dx + 2 )( x2 + ax - 2 )
P(x) = x4 - x3 - 2x - 4 = ( x2 + dx + 2 )( x2 + ax - 2 )
⇔ x4 - x3 - 2x - 4 = x4 + ax3 - 2x2 + dx3 + adx2 - 2dx + 2x2 + 2ax - 4
⇔ x4 - x3 - 2x - 4 = x4 + ( a + d )x3 + adx2 + ( 2a - 2d )x - 4
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}a+d=-1\\ad=0\\2a-2d=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-1\\d=0\end{cases}}\)
( x2 + dx + 2 )( x2 + ax - 2 )
= ( x2 + 2 )( x2 - x - 2 )
= ( x2 + 2 )( x2 - 2x + x - 2 )
= ( x2 + 2 )[ x( x - 2 ) + ( x - 2 ) ]
= ( x2 + 2 )( x - 2 )( x + 1 )
=> P(x) = x4 - x3 - 2x - 4 = ( x2 + 2 )( x - 2 )( x + 1 )
phân tích đa thức thành nhân tử : x^4 - x^3 - 2x - 4 biết rằng 1 nhân tử có dạng x^2 + dx +2
GIÚP MÌNH NHA!...
\(x^4-x^3-2x-4\)
\(=x^4-x^3-2x^2+2x^2-2x-4\)
\(=x^2\left(x^2-x-2\right)+2\left(x^2-x-2\right)\)
\(=\left(x^2-x-2\right)\left(x^2+2\right)\)
\(=\left(x^2+x-2x-2\right)\left(x^2+2\right)\)
\(=\left[x\left(x+1\right)-2\left(x+1\right)\right]\left(x^2+2\right)\)
\(=\left(x-2\right)\left(x+1\right)\left(x^2+2\right)\)
Đa thức x^3 - 2x^2 + x - xy^2 được phân tích thành nhân tử
Đa thức x^3 + 3x^2y +3xy^2 + y^3 được phân tích thành nhân tử là
Đa thức 4x(2y-z)+7y(2y-z) được phân tích thành nhân tử là:
Đa thức x^2+4x+4 được phân tích thành nhân tử là
Tìm x biết x(x-2)-x+2
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Phân tích đa thức thành nhân tử x 4 - x3 - 2x -4 biết có nhân tử x2 - 3x + 2
ĐỀ MÀ SAI THÌ LẤY CÁI CHI MÀ LÀM....???
phân tích đa thức thành nhân tử (thêm bớt cùng một hạng tử):
x^3 - 2x - 4
phân tích đa thức thành nhân tử (đặt biến phụ):
x^4 + 2x^3 + 5x^2 + 4x - 12
#)Giải :
\(x^3-2x-4\)
\(=x^3+2x^2-2x^2+2x-4x-4\)
\(=x^3+2x^2+2x-2x^2-4x-4\)
\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(x^4+2x^3+5x^2+4x-12\)
\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)
\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)
Câu 1.
Đoán được nghiệm là 2.Ta giải như sau:
\(x^3-2x-4\)
\(=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
Đa thức x^4 + 2x^3 + x^2 được phân tích thành nhân tử là
Bài 1. Phân tích đa thức 2x – 4y thành nhân tử được kết quả là:
A.2(x – 2y) B. 2( x + y) C. 4(2x – y) D. 2(x + 2y)
Bài 2. Phân tích đa thức 4x2 – 4xy thành nhân tử được kết quả là:
A.4(x2 – xy) B. x(4x – 4y) C. 4x(x – y) D. 4xy(x – y)
Bài 3. Tại x = 99 giá trị biểu thức x2 + x là:
A.990 B. 9900 C. 9100 D. 99000
Bài 4. Các giá trị của x thỏa mãn biểu thức x2 – 12x = 0 là:
A.x = 0 B. x = 12 C. x = 0 và x = 12 D. x = 11
Giúp mik với mik cảm ơn
Phân tích đa thức thành nhân tử
\(2x^2-5x+1\)
\(x^4-5x^2+4\)
\(x^3-x^2+2x+4\)
\(x^4-5x^2+4=\left(x^2-4\right)\left(x^2-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)