Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Vũ Thanh Nhàn
Xem chi tiết
Lê Tài Bảo Châu
15 tháng 11 2019 lúc 22:10

Tham khảo

Câu hỏi của Châu Trần - Toán lớp 9 - Học toán với OnlineMath

Khách vãng lai đã xóa
Lê Tài Bảo Châu
15 tháng 11 2019 lúc 22:11

à xl gửi lộn

Khách vãng lai đã xóa
lili
15 tháng 11 2019 lúc 22:38

Oh yeah mik lm đc r.

\(\frac{1}{\sqrt{ab+a+2}}< =\frac{1}{ab+a+2}+\frac{1}{4}\\ \)

\(=>VT< =sigma\frac{1}{ab+a+2}+\frac{3}{4}\)

\(Có\frac{1}{ab+a+2}< =\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{c}{c+1}+\frac{1}{a+1}\right)\)

\(CMTT\frac{1}{bc+c+2}< =\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{c+1}\right)\)

\(\frac{1}{ca+c+2}< =\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{c+1}\right)\)

Cộng lại => Vế trái <= 1/4.3/4+3/4=3/2

=> đpcm.

Khách vãng lai đã xóa
hung
Xem chi tiết
Cao Mai Hoàng
17 tháng 1 2020 lúc 5:18

bạn có đang on không chat vs mình đi

Khách vãng lai đã xóa
tth_new
24 tháng 3 2020 lúc 6:00

Trước khi đọc lời giải hãy thăm nhà em trước nhé ! See method from solution! Cảm ơn mn!

Ok, giờ chú ý:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

\(=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{ab.ca+abc+ab}\)

\(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}=1\) với abc = 1.

Như vậy: \(VT=\sqrt{\left(\Sigma\frac{1}{\sqrt{ab+a+2}}\right)^2}\le\sqrt{3\left(\Sigma\frac{1}{\frac{\left(ab+a+1\right)}{3}+\frac{\left(ab+a+1\right)}{3}+\frac{\left(ab+a+1\right)}{3}+1}\right)}\)

\(\le\sqrt{\frac{3}{16}\left[\Sigma\left(\frac{9}{ab+a+1}+1\right)\right]}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

Khách vãng lai đã xóa
Le Trang Nhung
Xem chi tiết
Thắng Nguyễn
1 tháng 3 2017 lúc 13:11

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

Hoàng Phúc
1 tháng 3 2017 lúc 21:04

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện

huỳnh minh quí
2 tháng 3 2017 lúc 21:20

Bài 3 

\(VT=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}+b-\frac{bc\left(b+c\right)}{b^2+bc+c^2}+c-\frac{ca\left(c+a\right)}{c^2+ca+a^2}\)

Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm

\(\Rightarrow\hept{\begin{cases}a^2+ab+b^2\ge3ab\\b^2+bc+c^2\ge3bc\\c^2+ca+a^2\ge3ca\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{ab\left(a+b\right)}{a^2+ab+b^2}\le\frac{a+b}{3}\\\frac{bc\left(b+c\right)}{b^2+bc+c^2}\le\frac{b+c}{3}\\\frac{ca\left(c+a\right)}{c^2+ca+a^2}\le\frac{c+a}{3}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\frac{a+b}{3}\\b-\frac{bc\left(b+c\right)}{b^2+bc+c^2}\ge b-\frac{b+c}{3}\\c-\frac{ca\left(c+a\right)}{c^2+ca+a^2}\ge c-\frac{c+a}{3}\end{cases}}\)

\(\Rightarrow VT\ge a+b+c-\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow VT\ge\frac{a+b+c}{3}\)

\(\Leftrightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)( đpcm )

Leonah
Xem chi tiết
Called love
Xem chi tiết
Trà My
27 tháng 5 2017 lúc 10:11

Nhân cả 2 vế với a+b+c 

Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0

dễ rồi nhé

Trà My
27 tháng 5 2017 lúc 10:23

b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)

\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được: 

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)

=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)

=>Pmax=3/4 <=> x=y=z=1/3

Trà My
27 tháng 5 2017 lúc 10:34

c) Áp dụng bđt Cauchy Schwarz dạng Engel ta được:

\(P=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{\left(1+1+1\right)^2}{a^2+2ab+b^2+2ac+c^2+2ab}=\frac{9}{\left(a+b+c\right)^2}\)

<=>\(P\ge\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1^2}=9\)

Vậy Pmin=9 <=> a=b=c=1/3

Kuramajiva
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 12 2020 lúc 21:34

1. Đề thiếu

2. BĐT cần chứng minh tương đương:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Ta có:

\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)

3.

Ta có:

\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)

\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)

\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)

Lại có:

\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)

Nguyễn Việt Lâm
30 tháng 12 2020 lúc 21:37

4.

Ta có:

\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)

\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

5.

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)

Nguyễn Việt Lâm
30 tháng 12 2020 lúc 21:39

Câu 1:

\(VT=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(VT=1-\dfrac{1}{n}< 1\) (đpcm)

Dung Đặng Phương
Xem chi tiết
Phùng Minh Quân
25 tháng 1 2020 lúc 21:05

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

Khách vãng lai đã xóa
Nyatmax
25 tháng 1 2020 lúc 22:23

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)

Khách vãng lai đã xóa
Nyatmax
26 tháng 1 2020 lúc 8:21

Cho o dong 2 la x,y,z nhe,ghi nham

Khách vãng lai đã xóa
Đặng Kim Anh
Xem chi tiết
Kudo Shinichi
3 tháng 2 2020 lúc 9:55

Áp dụng bất đẳng thức Cauchy - Schwarz ta có :

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=9^2\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge9\Rightarrow a^2+b^2+c^2\ge3\)

Lại có : \(a^2+b^2+c^2\ge ab+bc+ac\forall a,b,c\)

\(\Rightarrow3\ge ab+bc+ac\Rightarrow ab+bc+ac\le3\)

Bất đẳng thức ban đầu tương đương với :

\(\frac{a^2}{a\left(b^2+1\right)}+\frac{b^2}{b\left(c^2+1\right)}+\frac{c^2}{c\left(a^2+1\right)}\ge\frac{3}{2}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng Engel ta có :
\(\frac{a^2}{a\left(b^2+1\right)}+\frac{b^2}{b\left(c^2+1\right)}+\frac{c^2}{c\left(a^2+1\right)}\)

\(\ge\frac{\left(a+b+c\right)^2}{a\left(b^2+1\right)+b\left(c^2+1\right)+c\left(a^2+1\right)}\)

Áp dụng BĐT AM - GM ta có :
\(\hept{\begin{cases}a\left(b^2+1\right)\ge a.2\sqrt{b^2}=2ba\\b\left(c^2+1\right)\ge b.2\sqrt{c^2}=2cb\\c\left(a^2+1\right)\ge c.2\sqrt{a^2}=2ac\end{cases}}\)

\(\Rightarrow\frac{a^2}{a\left(b^2+1\right)}+\frac{b^2}{b\left(c^2+1\right)}+\frac{c^2}{c\left(a^2+1\right)}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Mà \(ab+bc+ca\le3\Rightarrow\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{2.3}=\frac{9}{6}=\frac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

Chúc bạn học tốt !!!

Khách vãng lai đã xóa
Jennie Kim
3 tháng 2 2020 lúc 9:55

Ta không thể sử dụng trực tiếp bất đẳng thức AM−GM với mẫu số vì bất đẳng thức sẽ đổi chiều

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)\(\le\)\(\frac{a}{2b}+\frac{b}{2c}+\frac{c}{2a}\ge\frac{3}{2}\)
Tuy nhiên, rất may mắn ta có thể dùng lại bất đẳng thức đó theo cách khác

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Ta đã sử dụng bất đẳng thức AM−GMcho 2 số 1+b2≥2b ở dưới mẫu nhưng lại có được một bất đẳng thức thuận chiều? Sự may mắn ở đây là một cách dùng ngược bất đẳng thức AM−GMAM−GM, một kĩ thuật rất ấn tượng và bất ngờ. Nếu không sử dụng phương pháp này thì bất đẳng thức trên sẽ rất khó và dài.

Từ bất đẳng thức trên, xây dựng 2 bất đẳng thức đương tự với b,cb,c rồi cộng cả 3 bất đẳng thức lại suy ra:

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}=a+b+c-\frac{ab+bc+ac}{2}\ge\frac{3}{2}\)
vì ta có ab+bc+ac≤3. Đẳng thức xảy ra khi a=b=c=1.
Với cách làm trên có thể xây dựng bất đẳng thức tương tự với 4 số.

Chúc bạn học tốt!!! k mình nha=))

Khách vãng lai đã xóa
ivyuyen
Xem chi tiết
Kiệt Nguyễn
4 tháng 6 2020 lúc 18:47

Vì abc = 1 nên ta có thể đặt \(\left(a;b;c\right)\rightarrow\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\). Khi đó: 

\(VT=\Sigma_{cyc}\frac{1}{\sqrt{\frac{x}{z}+\frac{x}{y}+2}}=\Sigma_{cyc}\frac{\sqrt{yz}}{\sqrt{xy+xz+2yz}}\)

\(\Rightarrow VT^2\le\left(1+1+1\right)\left(\Sigma_{cyc}\frac{yz}{xy+xz+2yz}\right)\left(\text{ }\right)\)(Theo BĐT Cauchy-Schwarz)

\(\le\frac{3}{4}\left[\Sigma_{cyc}yz\left(\frac{1}{xy+yz}+\frac{1}{xz+yz}\right)\right]=\frac{3}{4}\left(\Sigma_{cyc}\frac{xy+yz}{xy+yz}\right)=\frac{9}{4}\)

\(\Rightarrow VT\le\frac{3}{2}\)

Đẳng thức xảy ra khi x = y = z hay a = b = c = 1

Khách vãng lai đã xóa