Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Minh
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 11 2021 lúc 22:25

Max thì đơn giản thôi em:

Do \(0\le m;n\le1\Rightarrow0< 2-mn\le2\)

\(\Rightarrow M=\dfrac{\left(2-mn\right)\left(m+n+1\right)}{mn+m+n+1}\le\dfrac{2\left(m+n+1\right)}{mn+m+n+1}\le\dfrac{2\left(m+n+1\right)}{m+n+1}=2\)

\(M_{max}=2\) khi \(mn=0\)

Itachi Uchiha
Xem chi tiết
Thắng Nguyễn
19 tháng 5 2017 lúc 7:24

Vì \(0\le a,b,c\le1\Rightarrow\hept{\begin{cases}a^2\left(1-b\right)\le a\left(1-b\right)\\b^2\left(1-c\right)\le b\left(1-c\right)\\c^2\left(1-a\right)\le c\left(1-a\right)\end{cases}}\)

\(\Rightarrow a^2+b^2+c^2-\left(a^2b+b^2c+c^2a\right)\le a+b+c-\left(ab+bc+ca\right)\)

\(\Rightarrow\left(a^2b+b^2c+c^2a\right)+\left(a+b+c\right)\ge a^2+b^2+c^2+ab+bc+ca\)

\(\Rightarrow\left(a^2b+b^2c+c^2a\right)+\left(ab+bc+ca\right)+\left(a+b+c\right)\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Rightarrow VT\ge\left(a+b+c\right)^2-\left(a+b+c\right)=\left(a+b+c\right)\left(a+b+c-1\right)\)

Do \(a+b+c\ge2\Rightarrow a+b+c-1\ge1\Rightarrow VT\ge2\)

Đẳng thức xảy ra khi 1 trong 3 số a,b,c có 2 số bằng 1 và 1 số bằng 0

Itachi Uchiha
19 tháng 5 2017 lúc 14:15

bạn thử giải hộ mình mấy bài này vs

https://diendantoanhoc.net/topic/173087-to%C3%A1n-%C3%B4n-thi-v%C3%A0o-l%E1%BB%9Bp-10/#entry681162

Itachi Uchiha
19 tháng 5 2017 lúc 14:33

đây này

1,Cho a,b,c>0 thỏa mãn a+b+c=abc.CMR:

\(\frac{bc}{a\left(1+bc\right)}+\frac{ca}{b\left(1+ca\right)}+\frac{ab}{c\left(1+ab\right)}\ge\frac{3\sqrt{3}}{4}\)

2,Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)

Tìm GTLN của P= \(\sqrt{\frac{a^2}{a^2+b+c}}+\sqrt{\frac{b^2}{b^2+c+a}}+\sqrt{\frac{c^2}{c^2+a+b}}\)

3,Cho a,b,c>0 thỏa mãn a+b+c=3.

Tìm GTLN của Q= \(2\sqrt{abc}\left(\frac{1}{\sqrt{3a^2+4b^2+5}}+\frac{1}{\sqrt{3b^2+4c^2+5}}+\frac{1}{\sqrt{3c^2+4a^2+5}}\right)\)

4,Cho a,b,c>0.

Tìm GTNN của P= \(\frac{\sqrt{ab}}{c+3\sqrt{ab}}+\frac{\sqrt{bc}}{a+3\sqrt{bc}}+\frac{\sqrt{ca}}{b+3\sqrt{ca}}\)

Admin (a@olm.vn)
Xem chi tiết
Nguyễn Phương Linh
Xem chi tiết
Siêu Quậy Quỳnh
Xem chi tiết
alibaba nguyễn
1 tháng 8 2017 lúc 9:24

\(Q=a^2\left(b-c\right)+b^2\left(c-b\right)+c^2\left(1-c\right)\)

\(\le b^2\left(c-b\right)+c^2\left(1-c\right)\)

\(=4.\frac{b}{2}.\frac{b}{2}.\left(c-b\right)+c^2\left(1-c\right)\)

\(\le\frac{4.\left(\frac{b}{2}+\frac{b}{2}+c-b\right)^3}{27}+c^2\left(1-c\right)\)

\(\le\frac{4.c^3}{27}+c^2\left(1-c\right)\)

\(=c^2\left(1-\frac{23c}{27}\right)\)

\(=\frac{23c}{54}.\frac{23c}{54}.\left(1-\frac{23c}{27}\right).\frac{2916}{529}\)

\(\le\frac{2916}{529}.\frac{\left(\frac{23c}{54}+\frac{23c}{54}+1-\frac{23c}{27}\right)^3}{27}=\frac{108}{529}\)

Dấu = xảy ra khi \(a=0;b=\frac{12}{23};c=\frac{18}{23}\)

Đậu Nguyễn Khánh Ly
1 tháng 8 2017 lúc 7:16

CÁC KIẾN THỨC CẦN LƯU Ý A ≥ B ⇔ A − B ≥ 0 1/Định nghĩa  A ≤ B ⇔ A − B ≤ 0 2/Tính chất + A>B ⇔ B < A + A>B và B >C ⇔ A > C + A>B ⇒ A+C >B + C + A>B và C > D ⇒ A+C > B + D + A>B và C > 0 ⇒ A.C > B.C + A>B và C < 0 ⇒ A.C < B.C + 0 < A < B và 0 < C <D ⇒ 0 < A.C < B.D + A > B > 0 ⇒ A n > B n ∀n + A > B ⇒ A n > B n với n lẻ + A > B ⇒ A n > B n với n chẵn + m > n > 0 và A > 1 ⇒ A m > A n + m > n > 0 và 0 <A < 1 ⇒ A m < A n 1 1 +A < B và A.B > 0 ⇒ > A B 3/Một số hằng bất đẳng thức + A 2 ≥ 0 với ∀ A ( dấu = xảy ra khi A = 0 ) + An ≥ 0 với ∀ A ( dấu = xảy ra khi A = 0 ) + A ≥ 0 với ∀A (dấu = xảy ra khi A = 0 ) + -A <A= A + A + B ≥ A + B ( dấu = xảy ra khi A.B > 0) + A − B ≤ A − B ( dấu = xảy ra khi A.B < 0)Sưu tầm và tuyển chọn 1

Ngự thủy sư
Xem chi tiết
Trần Phúc Khang
29 tháng 5 2019 lúc 16:11

Theo đề bài ta có

\(a\left(1-a\right)\left(1-b\right)\ge0\)=> \(a^2b\ge a^2+ab-a\)

\(b\left(1-c\right)\left(1-b\right)\ge0\)=> \(b^2c\ge b^2+bc-b\)

Tương tự \(c^2a\ge c^2+ac-c\)

Khi đó

\(VT\ge a^2+b^2+c^2+2ab+2bc+2ac-\left(a+b+c\right)=2^2-2=2\)(ĐPCM)

Dấu bằng xảy ra khi \(a=b=1,c=0\)và các hoán vị

ミ★ɦυүềη☆bùї★彡
Xem chi tiết
Đen đủi mất cái nik
2 tháng 11 2018 lúc 19:37

\(DPCM\Leftrightarrow P=a^2\left(b-c\right)+b^2\left(c-b\right)+c^2\left(1-c\right)\le\frac{108}{529}\)

Ta có: \(0\le a\le b\le c\le1\Rightarrow a^2\left(b-c\right)\le0\left(1\right)\)

\(b^2\left(c-b\right)=4.\frac{b}{2}.\frac{b}{2}.\left(c-b\right)\le4\left(\frac{\frac{b}{2}+\frac{b}{2}+c-b}{3}\right)^3=\frac{4c^3}{27}\)

\(\Rightarrow P\le\frac{4c^3}{27}+c^2\left(1-c\right)=c^2\left(1-\frac{23c}{27}\right)=\frac{23c}{54}.\frac{23c}{54}\left(1-\frac{23c}{27}\right).\frac{54^2}{23^2}\)

Đen đủi mất cái nik
2 tháng 11 2018 lúc 19:41

Tiếp

\(\le\left(\frac{\frac{23c}{54}+\frac{23c}{54}+1-\frac{23c}{27}}{3}\right)^3.\frac{54^2}{23^2}=\frac{1}{27}.\frac{54^2}{23^2}=\frac{108}{529}\)

Dấu bằng xảy ra\(\Leftrightarrow\hept{\begin{cases}a^2\left(b-c\right)=0\\\frac{b}{2}=c-b\\\frac{23c}{54}=1-\frac{23c}{27}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=\frac{2}{3}c\\c=\frac{18}{23}\end{cases}}\)

Pox Pox
Xem chi tiết
HD Film
20 tháng 10 2019 lúc 11:29

a, \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

=> a=b=c

Khách vãng lai đã xóa
HD Film
20 tháng 10 2019 lúc 11:35

b, \(0=\left(a+b+c\right)^3=a^3+b^3+c^3+6abc+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3ca^2\)

\(=a^3+b^3+c^3+6abc+3ab\left(a+b\right)+3bc\left(b+c\right)+3ac\left(a+c\right)\)

\(=a^3+b^3+c^3+6abc-3abc-3abc-3abc\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Khách vãng lai đã xóa
HD Film
20 tháng 10 2019 lúc 11:43

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

Từ (a) -> hoặc a+b+c = 0 hoặc a=b=c. Vậy ko thể khẳng định như vây

Khách vãng lai đã xóa
Lê Văn Hoàng
Xem chi tiết
Phan Văn Hiếu
16 tháng 9 2017 lúc 17:59

đề thiếu

Nguyễn Hoàng Dũng
17 tháng 9 2017 lúc 19:53

Đặt \(a=\frac{x}{y},b=\frac{y}{z},c=\frac{z}{x}\) là ra bạn KK