\(x^2-6y^2=1\)
⇒ \(x^2-1=6y^2\)
⇒ \(y^2=\dfrac{x^2-1}{6}\)
Nhận thấy y2 ∈ Ư của x2 - 1⋮6
⇒ y2 là số chẵn
Mà y là số nguyên tố → y = 2
Thay vào, ta có:
\(x^2-1=4\cdot6=24\)
⇒ \(x^2=25\) → x = 5
Vậy x=5 ; y=2
xin tích
Bài 1:
Tìm các số nguyên x,y biết;
a,x.(2y-1)=6y+5 b,xy-2x+3y=4
Bài 2: Tìm các số tự nhiên x,n và số nguyên tố p,q biết:
a,pq+13;5p+q đều là số nguyên tố
b,(x^2+4x+32)(x+4)
Bài 1: Tìm số nguyên tố biết rằng số đó bằng tổng của hai số nguyên tố và bằng hiệu của hai số nguyên tố đó.
Bài 2: Tìm tất cả các số nguyên tố x,y,z sao cho \(x^2 - 6y^2 = 1\)
Bài 1 bạn tham khảo đi có trong các câu hỏi tương tự
Bài 2 : Ta có :
\(x^2-6y^2=1\)
\(\Rightarrow x^2-1=6y^2\)
\(\Rightarrow y^2=\frac{x^2-1}{6}\)
Nhận thấy \(y^2\inƯ\)của \(x^2-1⋮6\)
=> y2 là số chẵn
Mà y là số nguyên tố => y = 2
Thay vào : \(\Rightarrow x^2-1=4\cdot6=24\)
\(\Rightarrow x^2=25\Rightarrow x=5\)
Vậy x=5 ; y =2
Tìm 2 số nguyên tố x và y biết x^2-6y^2=1
Tìm các số nguyên tố x, y thỏa mãn (x-1)(x+1)=6y^2
Lời giải:
$(x-1)(x+1)=6y^2$
$\Leftrightarrow x^2-1=6y^2$
$\Rightarrow x^2=6y^2+1$ lẻ $\Rightarrow x$ lẻ.
Ta biết 1 scp khi chia cho 4 thì dư $0$ hoặc $1$. Vì $x$ là số lẻ nên $x^2$ là scp lẻ $\Rightarrow$ $x^2$ chia $4$ dư $1$
$\Rightarrow 6y^2=x^2-1\vdots 4$
$\Rightarrow y^2\vdots 2$
$\Rightarrow y$ chẵn. Mà $y$ là số nguyên tố nên $y=2$.
Khi đó $x^2=6y^2+1=6.2^2+1=25$
$\Rightarrow x=5$ (thỏa mãn)
$
a) tìm hai số nguyên tố x,y sao cho :x2-6y2=1
b)tính tổng các số nguyên tố x biết 2 [x-2]=8 (dấu[] là giá trị tuyệt đối)
Tìm các số nguyên tố x,y thỏa mãn: x^2 + 1 = 6y^2 + 2
đỐ
Sorry bạn nhưng mình từng giải bài này
Ta có phương trình đơn giản lại tương tự phương trình Pell như sau: $x^2 - 6y^2 = -1$ Ta có thể giải phương trình này bằng phương pháp Pell như sau: Giả sử $x_1, y_1$ là một nghiệm của phương trình, ta có thể tìm được một nghiệm khác bằng cách sử dụng công thức sau: $x_{n+1} = 5x_n + 12y_n$ $y_{n+1} = 2x_n + 5y_n$ Với $x_1 = 5, y_1 = 1$, ta có thể tìm được các giá trị $x$ và $y$ bằng cách lần lượt tính các giá trị $x_n$ và $y_n$ bằng công thức trên cho đến khi tìm được một nghiệm thỏa mãn $x^2 - 6y^2 = -1$. $x_1 = 5, y_1 = 1$ $x_2 = 29, y_2 = 5$ $x_3 = 169, y_3 = 29$ $x_4 = 985, y_4 = 169$ $x_5 = 5741, y_5 = 985$ Vậy $(x, y) = (5741, 985)$ là một nghiệm của phương trình $x^2 - 6y^2 = -1$. Ta kiểm tra xem $x$ và $y$ có phải đều là số nguyên tố hay không. Ta nhận thấy rằng $x$ chia hết cho 7, do đó $x$ không phải là số nguyên tố. Tuy nhiên, ta thấy rằng $y$ là số nguyên tố. Vì vậy, đáp án của bài toán là $(x, y) = (5741, 985)$ với $y$ là số nguyên tố.
tìm các số nguyên tố để x,y thỏa mãn x^2 + 1 = 6y^2+2.
Tìm các số nguyên tố x,y sao cho x^2-6y^2=1