Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
the glory
Xem chi tiết
Gia Huy
4 tháng 7 2023 lúc 14:17

loading...  

dohoangan
Xem chi tiết
ffffffffffffffffffffffff...
Xem chi tiết
KYAN Gaming
Xem chi tiết
Edogawa Conan
10 tháng 8 2021 lúc 22:13

Ta có:\(A=\left(\dfrac{a+4\sqrt{a}+4}{a+2\sqrt{a}}-\dfrac{\sqrt{a}}{\sqrt{a}-2}\right):\left(\dfrac{\sqrt{a}-4}{a-2\sqrt{a}}-\dfrac{3\sqrt{a}+6}{4-a}\right)\)

             \(=\left[\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}\left(\sqrt{a}+2\right)}-\dfrac{\sqrt{a}}{\sqrt{a}-2}\right]:\left[\dfrac{\sqrt{a}-4}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{3\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right]\)

             \(=\dfrac{a-4-a-2\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-2\right)}:\dfrac{\sqrt{a}-4+3\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-2\right)}\)

            \(=\dfrac{-4-2\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-2\right)}.\dfrac{\sqrt{a}\left(\sqrt{a}-2\right)}{4\sqrt{a}-4}=\dfrac{-2-\sqrt{a}}{2\sqrt{a}-2}\)

Nguyễn Lê Phước Thịnh
10 tháng 8 2021 lúc 22:15

Ta có: \(A=\left(\dfrac{a+4\sqrt{a}+4}{a+2\sqrt{a}}-\dfrac{\sqrt{a}}{\sqrt{a}-2}\right):\left(\dfrac{\sqrt{a}-4}{a-2\sqrt{a}}-\dfrac{3\sqrt{a}+6}{4-a}\right)\)

\(=\left(\dfrac{\sqrt{a}+2}{\sqrt{a}}-\dfrac{\sqrt{a}}{\sqrt{a}-2}\right):\left(\dfrac{\sqrt{a}-4}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{3}{\sqrt{a}-2}\right)\)

\(=\dfrac{a-4-a}{\sqrt{a}\left(\sqrt{a}-2\right)}:\dfrac{\sqrt{a}-4+3\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-2\right)}\)

\(=\dfrac{-4}{4\left(\sqrt{a}+1\right)}=\dfrac{-1}{\sqrt{a}+1}\)

Trần Thành Phát Nguyễn
Xem chi tiết
hyun mau
Xem chi tiết
Trần Thị Loan
3 tháng 4 2015 lúc 10:19

Chia cả tử và mẫu của các phân số cho a khác 0 ta được:

\(A=\frac{a+b}{a-b}+\frac{a-b}{a+b}=\frac{\frac{a}{b}+1}{\frac{a}{b}-1}+\frac{\frac{a}{b}-1}{\frac{a}{b}+1}=\frac{\left(\frac{a}{b}+1\right)^2+\left(\frac{a}{b}-1\right)^2}{\left(\frac{a}{b}-1\right)\left(\frac{a}{b}+1\right)}=\frac{2.\left(\frac{a}{b}\right)^2+2}{\left(\frac{a}{b}\right)^2-1}\)

\(\Rightarrow A.\left(\frac{a}{b}\right)^2-A=2.\left(\frac{a}{b}\right)^2+2\Rightarrow A.\left(\frac{a}{b}\right)^2-2.\left(\frac{a}{b}\right)^2=A+2\)

\(\Rightarrow\left(A-2\right).\left(\frac{a}{b}\right)^2=A+2\Rightarrow\left(\frac{a}{b}\right)^2=\frac{A+2}{A-2}\)

ta có: \(B=\frac{\left(\frac{a}{b}\right)^4+1}{\left(\frac{a}{b}\right)^4-1}+\frac{\left(\frac{a}{b}\right)^4-1}{\left(\frac{a}{b}\right)^4+1}\)

\(\Rightarrow B=\frac{\left(\frac{A+2}{A-2}\right)^2+1}{\left(\frac{A+2}{A-2}\right)^2-1}+\frac{\left(\frac{A+2}{A-2}\right)^2-1}{\left(\frac{A+2}{A-2}\right)^2+1}=\frac{\left(A+2\right)^2+\left(A-2\right)^2}{\left(A+2\right)^2-\left(A-2\right)^2}+\frac{\left(A+2\right)^2-\left(A-2\right)^2}{\left(A+2\right)^2+\left(A-2\right)^2}\)

\(\Rightarrow B=\frac{2.A^2+8}{8.A}+\frac{8.A}{2.A^2+8}=\frac{\left(2A^2+8\right)^2+64.A^2}{8.A\left(2A^2+8\right)}=\frac{\left(A^2+4\right)^2+16.A^2}{4.A\left(A^2+4\right)}\)

 

Đinh Cao Sơn
11 tháng 4 2015 lúc 21:56

Chia cả tử và mẫu của các phân số cho a khác 0 ta được:

$A=\frac{a+b}{a-b}+\frac{a-b}{a+b}=\frac{\frac{a}{b}+1}{\frac{a}{b}-1}+\frac{\frac{a}{b}-1}{\frac{a}{b}+1}=\frac{\left(\frac{a}{b}+1\right)^2+\left(\frac{a}{b}-1\right)^2}{\left(\frac{a}{b}-1\right)\left(\frac{a}{b}+1\right)}=\frac{2.\left(\frac{a}{b}\right)^2+2}{\left(\frac{a}{b}\right)^2-1}$A=a+ba−b +a−ba+b =ab +1ab −1 +ab −1ab +1 =(ab +1)2+(ab −1)2(ab −1)(ab +1) =2.(ab )2+2(ab )2−1 

$\Rightarrow A.\left(\frac{a}{b}\right)^2-A=2.\left(\frac{a}{b}\right)^2+2\Rightarrow A.\left(\frac{a}{b}\right)^2-2.\left(\frac{a}{b}\right)^2=A+2$⇒A.(ab )2−A=2.(ab )2+2⇒A.(ab )2−2.(ab )2=A+2

$\Rightarrow\left(A-2\right).\left(\frac{a}{b}\right)^2=A+2\Rightarrow\left(\frac{a}{b}\right)^2=\frac{A+2}{A-2}$⇒(A−2).(ab )2=A+2⇒(ab )2=A+2A−2 

ta có: $B=\frac{\left(\frac{a}{b}\right)^4+1}{\left(\frac{a}{b}\right)^4-1}+\frac{\left(\frac{a}{b}\right)^4-1}{\left(\frac{a}{b}\right)^4+1}$B=(ab )4+1(ab )4−1 +(ab )4−1(ab )4+1 

$\Rightarrow B=\frac{\left(\frac{A+2}{A-2}\right)^2+1}{\left(\frac{A+2}{A-2}\right)^2-1}+\frac{\left(\frac{A+2}{A-2}\right)^2-1}{\left(\frac{A+2}{A-2}\right)^2+1}=\frac{\left(A+2\right)^2+\left(A-2\right)^2}{\left(A+2\right)^2-\left(A-2\right)^2}+\frac{\left(A+2\right)^2-\left(A-2\right)^2}{\left(A+2\right)^2+\left(A-2\right)^2}$⇒B=(A+2A−2 )2+1(A+2A−2 )2−1 +(A+2A−2 )2−1(A+2A−2 )2+1 =(A+2)2+(A−2)2(A+2)2−(A−2)2 +(A+2)2−(A−2)2(A+2)2+(A−2)2 

$\Rightarrow B=\frac{2.A^2+8}{8.A}+\frac{8.A}{2.A^2+8}=\frac{\left(2A^2+8\right)^2+64.A^2}{8.A\left(2A^2+8\right)}=\frac{\left(A^2+4\right)^2+16.A^2}{4.A\left(A^2+4\right)}$⇒B=2.A2+88.A +8.A2.A2+8 =(2A2+8)2+64.A28.A(2A2+8) =(A2+4)2+16.A24.A(A2+4) 

 

Vi Vu
Xem chi tiết
phù thủy đanh đá
Xem chi tiết
Katherine Lilly Filbert
21 tháng 8 2015 lúc 20:28

\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{a\left(a+4\right)}\)

\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{a}-\frac{1}{a+4}\)

\(=\frac{1}{3}-\frac{1}{a+4}\)

Phương Trình Hai Ẩn
Xem chi tiết
Nguyễn An Khánh
12 tháng 12 2015 lúc 15:51

mk chưa học Hằng đẳng thức

Trần Lê Hà Vy
12 tháng 12 2015 lúc 15:52

tương tự nha Nguyễn Ngọc Sáng

Oriana.su
Xem chi tiết