Ta có:\(A=\left(\dfrac{a+4\sqrt{a}+4}{a+2\sqrt{a}}-\dfrac{\sqrt{a}}{\sqrt{a}-2}\right):\left(\dfrac{\sqrt{a}-4}{a-2\sqrt{a}}-\dfrac{3\sqrt{a}+6}{4-a}\right)\)
\(=\left[\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}\left(\sqrt{a}+2\right)}-\dfrac{\sqrt{a}}{\sqrt{a}-2}\right]:\left[\dfrac{\sqrt{a}-4}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{3\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right]\)
\(=\dfrac{a-4-a-2\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-2\right)}:\dfrac{\sqrt{a}-4+3\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-2\right)}\)
\(=\dfrac{-4-2\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-2\right)}.\dfrac{\sqrt{a}\left(\sqrt{a}-2\right)}{4\sqrt{a}-4}=\dfrac{-2-\sqrt{a}}{2\sqrt{a}-2}\)
Ta có: \(A=\left(\dfrac{a+4\sqrt{a}+4}{a+2\sqrt{a}}-\dfrac{\sqrt{a}}{\sqrt{a}-2}\right):\left(\dfrac{\sqrt{a}-4}{a-2\sqrt{a}}-\dfrac{3\sqrt{a}+6}{4-a}\right)\)
\(=\left(\dfrac{\sqrt{a}+2}{\sqrt{a}}-\dfrac{\sqrt{a}}{\sqrt{a}-2}\right):\left(\dfrac{\sqrt{a}-4}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{3}{\sqrt{a}-2}\right)\)
\(=\dfrac{a-4-a}{\sqrt{a}\left(\sqrt{a}-2\right)}:\dfrac{\sqrt{a}-4+3\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-2\right)}\)
\(=\dfrac{-4}{4\left(\sqrt{a}+1\right)}=\dfrac{-1}{\sqrt{a}+1}\)