1)Rút gọn biểu thức
P=\(\left(\dfrac{a+\sqrt{a}}{a\sqrt{a}+a+\sqrt{a}+1}+\dfrac{1}{a+1}\right):\dfrac{\sqrt{a}-1}{a+1}\)
1. Cho biểu thức: A=\(\left[\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\dfrac{a+\sqrt{a}}{a-1}\right]:\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{1}{\sqrt{a}-1}\right)\)
Rút gọn biểu thức trên
rút gọn biểu thức sau:
a.\(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
b.\(A=\dfrac{\sqrt{a}}{\sqrt{a}-5}-\dfrac{10\sqrt{a}}{a-25}-\dfrac{5}{\sqrt{a}+5}\) với a\(\ge\)0; a\(\ne25\)
rút gọn biểu thức
\(\left(\sqrt{a+1}-\dfrac{1}{\sqrt{a+1}}\right)\left(\dfrac{a^2+3\sqrt{a+1}-2a}{a}+2-a\right)\) với a>-1;a khác 0
1) Rút gọn biểu thứ
A=\(\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
a) Rút gọn A
b) Chứng minh A<1
Rút gọn các biểu thức sau:
a)\(\sqrt{8}-2\sqrt{50}+\sqrt{18}\) b)\(\left(\dfrac{\sqrt{a}-a}{1-\sqrt{a}}+\sqrt{a}\right):\left(\dfrac{2\sqrt{a}}{1+\sqrt{a}}\right)\) (với a>0;a\(\ne1\))
1) Rút gọn biểu thức
P=\(\left(\dfrac{3x-6\sqrt{x}}{x\sqrt{x}-2x}-\dfrac{1}{2-\sqrt{x}}+\dfrac{\sqrt{x}-3}{\sqrt{x}}\right).\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)
Rút gọn biểu thức \(P=\left(\dfrac{1}{\sqrt{a}-1}+\dfrac{1}{a-\sqrt{a}}\right):\dfrac{1}{\sqrt{a}-1}\left(0< a\in R,a\ne1\right)\)
1) Rút gọn biểu thức
P=\(\left(\dfrac{x}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}+1}-\dfrac{2}{1-x}\right):\left(\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\right)\)