Cho tam giác ABC vuông tại A đường cao AH AH=9cm AC=16cm a) tính các góc còn lại trong tam giác b)viết tỉ số lượng giác của góc B c) tính góc C
Cho tam giác ABC vuông tại A, đường cao AH. BH=9cm , CH=16cm a, Tính AB,AC,AH b, Tính tỉ số lượng giác của góc B c, Gọi D,E lần lượt là hình chiếu vuông góc của H trên AD,AC . CMR AD.AB=AE.AC
Δ ABC vuông tại A đường cao AH
⇒BH.CH=\(AH^2\)⇒AH=\(\sqrt{9\cdot16}\)=12 cm
BC=CH+BH=9+16=25 cm
\(AB^2\)=BH.BC=9.25=225⇒AB=15 cm
\(AC^2\)=CH.BC=16.25=400⇒AC=20 cm
Ta có:góc A=góc E =góc D=90 nên tứ giác ADHE là hcn
⇒góc AED=góc AHD (1)
lại có:góc AHD=góc ABC (cùng phụ với góc DHB) (2)
Từ (1) và (2) suy ra góc AED = góc ABC
Xét Δ AED và Δ ABC có
góc A chung
góc AED = góc ABC (cmt)
Nên Δ AED = Δ ABC
⇒\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)⇔AE.AC=AB.AD
c: Xét ΔABH vuông tại H có HD là đường cao ứng với cạnh huyền AB
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HE là đường cao ứng với cạnh huyền AC
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH. Biết HB=16cm, HC=9cm
a) Tính diện tích tam giác ABC
b) Tính tỉ số lượng giác của góc B
c) Tính số đo góc C
Cho tam giác ABC vuông tại A, AB = 9cm, AC = 12cm, đường cao AH. Kẻ HK vuông góc với AC tại K, kẻ HG vuông góc với AB tại G.
a)Tính độ dài đoạn AH và các tỉ số lượng giác của góc B ; từ đó suy ra các tỉ số lượng giác của góc C.
b)Chứng minh rằng: AC/HC=HB/AK
tam giác ABC vuông tại A có
* BC2=AB2+AC2
BC2=92+122=225
BC=15cm
* AH.BC=AB.AC
AH.15=9.12
AH.15=108
AH=7,2cm
\(sinB=\dfrac{4}{5};cosB=\dfrac{3}{5};tanB=\dfrac{4}{3};cotanb=\dfrac{3}{4}\)
\(=>sinC=\dfrac{3}{5};cosC=\dfrac{4}{5};tanC=\dfrac{3}{4};cotanC=\dfrac{4}{3}\)
b)
tam giác ABC vuông tại A có
AC.AK=AH2
HB.HC=AH2
=>AC.AK=HB.HC
\(=>\dfrac{AC}{HC}=\dfrac{HB}{AK}\)
Cho tam giác ABC vuông tại A biết góc C = 30 độ, AB = 9cm
a) Giải tam giác ABC (tính các góc, các cạnh còn lại của tam giác)
b)Kẻ đường cao AH của tam giác, Tính AH, BH
c) Tính độ dài phân giác AD của tam giác ABC
a, ^B = ^A - ^C = 900 - 300 = 600
\(\cos B=\frac{AB}{AC}\Rightarrow\frac{1}{2}=\frac{9}{AC}\Rightarrow AC=18\)cm
Áp dụng định lí Pytago tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2=81+324=405\Rightarrow BC=9\sqrt{5}\)cm
b, \(\cos B=\frac{BH}{AB}\Rightarrow\frac{1}{2}=\frac{BH}{9}\Rightarrow BH=\frac{9}{2}\)cm
\(\sin B=\frac{AH}{AB}\Rightarrow\frac{\sqrt{3}}{2}=\frac{AH}{9}\Rightarrow AH=\frac{9\sqrt{3}}{2}\)cm
c, Vì AD là đường phân giác nên : \(\frac{AB}{AC}=\frac{BD}{DC}\Rightarrow\frac{DC}{AC}=\frac{BD}{AB}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{DC}{AC}=\frac{BD}{AB}=\frac{DC+BD}{AC+AB}=\frac{9\sqrt{5}}{27}=\frac{\sqrt{5}}{3}\)
\(\Rightarrow BD=\frac{\sqrt{5}}{3}AB=\frac{\sqrt{5}}{3}.9=3\sqrt{5}\)cm
\(\Rightarrow HD=BD-BH=3\sqrt{5}-\frac{9}{2}\)cm
Áp dụng định lí tam giác AHD vuông tại H ta có :
\(AD^2=AH^2+HD^2=\left(\frac{9\sqrt{3}}{2}\right)^2+\left(3\sqrt{5}-\frac{9}{2}\right)^2\)
tự giải nhé ><
a. Giải tam giác ABC
B=60^0
AC=AB/tan30=9.√ 3
BC=AB/sin30=9.2 =18
S=AC.AB/2=81√ 3/2
b. Kẻ AH là đường cao, tính AH, BH
AH=2S/BC=81√ 3/18=9√ 3/2
BH=√ (AB^2-AH^2)=9√ (1-3/4)=9/2
đề 1:
Cho tam giác ABC vuông tại A, AH vuông góc BC,AB=30cm,AH=24cm.
a)tính BH?BC?
b)tính các tỉ số lượng giác của các góc của tam giác AHB
đề 2
cho tam giác ABC vuông tại A, AH vuông góc BC , HB=4cm, HC=9cm
a)tính các cạnh tam giác ABC
b)tính các góc của tam giác ABC
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 3cm; BC = 5cm. a/ Tính AC, AH, HB, HC. b/ Tính các tỉ số lượng giác của góc B và tính góc C. c/ Vẽ HM vuông góc AB tại M; vẽ HN vuông góc AC tại N. Chứng minh: AM. AB = AN. AC.
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
cho tam giác bc vuông tại a, ab=12cm,ac=16cm, phân giác add, đường cao ah.
a) tính ah,hb,hc,hd.
b)tính các tỉ số lượn giác của góc b,c.
c) tìm số đo góc b và góc c
a: BC=20(cm)
AH=9,6(cm)
BH=7,2(cm)
CH=12,8(cm)
bài 1
cho góc a(0<a<90)hãy tính sin a ,tan a nếu
a)cos a=12/13
b)cos a=3/5
bài 2
cho tam giác abc vuông tại a,đường cao ah,tính tỉ số lượng giác của góc C,từ đó suy ra tỉ số lượng giác của góc B,biết
a,AB=16cm,AC=12cm
b,Ac=13cm,CH=5cm
c,CH=3cm,BH=4cm
a) Ta có: \(cos\alpha=\dfrac{12}{13}\)
Mà: \(sin^2\alpha+cos^2a=1\)
\(\Rightarrow sin^2\alpha=1-cos^2\alpha\)
\(\Rightarrow sin^2\alpha=1-\left(\dfrac{12}{13}\right)^2\)
\(\Rightarrow sin^2\alpha=\dfrac{25}{169}\)
\(\Rightarrow sin\alpha=\sqrt{\dfrac{25}{169}}\)
\(\Rightarrow sin\alpha=\dfrac{5}{13}\)
Mà: \(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{5}{13}}{\dfrac{12}{13}}=\dfrac{5}{12}\)
b) Ta có: \(cos\alpha=\dfrac{3}{5}\)
Mà: \(sin^2\alpha+cos^2\alpha=1\)
\(\Rightarrow sin^2\alpha=1-cos^2\alpha\)
\(\Rightarrow sin^2\alpha=1-\left(\dfrac{3}{5}\right)^2\)
\(\Rightarrow sin^2\alpha=\dfrac{16}{25}\)
\(\Rightarrow sin\alpha=\sqrt{\dfrac{16}{25}}=\dfrac{4}{5}\)
Mà: \(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{4}{5}}{\dfrac{3}{5}}=\dfrac{4}{3}\)
2:
a: BC=căn 16^2+12^2=20cm
Xét ΔABC vuông tại A có
sin B=cos C=AC/BC=3/5
cos B=sin C=AB/BC=4/5
tan B=cot C=3/5:4/5=3/4
cot B=tan C=1:3/4=4/3
b: AH=căn 13^2-5^2=12cm
Xét ΔAHC vuông tại H có
sin C=AH/AC=12/13
=>cos B=12/13
cos C=HC/AC=5/13
=>sin B=5/13
tan C=12/13:5/13=12/5
=>cot B=12/5
tan B=cot C=1:12/5=5/12
c: BC=3+4=7cm
AB=căn BH*BC=2*căn 7(cm)
AC=căn CH*BC=căn 21(cm)
Xét ΔABC vuông tại A có
sin B=cos C=AC/BC=căn 21/7
sin C=cos B=AB/BC=2/căn 7
tan B=cot C=căn 21/7:2/căn 7=1/2*căn 21
cot B=tan C=1/căn 21/2=2/căn 21
1, Cho tam giác ABC vuông tại A. Biết AB = 7cm và AC = 21cm. Tính các tỉ số lượng giác của góc B và góc C
2, Cho tam giác ABC có AB = 6cm, AC = 4,5cm, BC = 7,5xm
a) Chứng minh tam giác ABC vuông tại A
b) Tính góc B, C vào đường cao AH của tam giác
c) Tính diện tích của tam giác ABC
cho tam giác ABC vuông tại A .Biết AB=7cm và AC=21 cm .tính các tỉ số lượng giác của góc B vá góc C