Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
....
Xem chi tiết
Đặng  Mai  Hương
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 12 2021 lúc 13:50

\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)

\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)

Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua

\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)

Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)

Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)

\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)

\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)

Đặt \(OH^2=t\)

\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)

Thành Đạt
Xem chi tiết
Oanh Thùy
Xem chi tiết
Cổn Cổn
Xem chi tiết
Hương Yangg
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Akai Haruma
30 tháng 12 2020 lúc 23:09

Lời giải:a) Gọi $M(x_0,y_0)$ là điểm cố định mà $(d)$ luôn đi qua với mọi giá trị của $m$. Ta chỉ cần chỉ ra $x_0,y_0$ có tồn tại là được.

$M\in (d), \forall m$

$\Leftrightarrow y_0=(m-2)x_0+2, \forall m$

$\Leftrightarrow mx_0+(2-2x_0-y_0)=0, \forall m$

\(\Leftrightarrow \left\{\begin{matrix} x_0=0\\ 2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_0=0\\ y_0=2\end{matrix}\right.\) 

Vậy $(d)$ luôn đi qua điểm cố định $(0,2)$ (đpcm)

b) Gọi $A,B$ lần lượt là giao điểm của $(d)$ với trục $Ox,Oy$

Dễ thấy $A(\frac{-2}{m-2},0)$ và $B(0,2)$

Áp dụng hệ thức lượng trong tam giác vuông, nếu khoảng cách từ $O$ đến $(d)$ là $h$ thì:

\(\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{|x_A|^2}+\frac{1}{|y_B|^2}=\frac{(m-2)^2}{4}+\frac{1}{4}\)

Để $h=1$ thì \((m-2)^2+1=4\Leftrightarrow m=\pm \sqrt{3}-2\)

c) Để $h_{\max}$ thì $\frac{(m-2)^2+1}{4}$ min

$\Leftrightarrow (m-2)^2+1$ min

Dễ thấy $(m-2)^2+1$ đạt giá trị min bằng $1$ khi $m-2=0\Leftrightarrow m=2$

Lizy
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 12 2023 lúc 20:32

(d): \(y=\left(m^2+3\right)x+4\)

=>\(\left(m^2+3\right)x-y+4=0\)

Khoảng cách từ O(0;0) đến (d) là:

\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m^2+3\right)+0\cdot\left(-1\right)+4\right|}{\sqrt{\left(m^2+3\right)^2+\left(-1\right)^2}}\)

\(=\dfrac{4}{\sqrt{\left(m^2+3\right)^2+1}}\)

\(m^2+3>=3\forall m\)

=>\(\left(m^2+3\right)^2>=9\forall m\)

=>\(\left(m^2+3\right)^2+1>=10\forall m\)

=>\(\sqrt{\left(m^2+3\right)^2+1}>=\sqrt{10}\forall m\)

=>\(\dfrac{4}{\sqrt{\left(m^2+3\right)^2+1}}< =\dfrac{4}{\sqrt{10}}\forall m\)

=>\(d\left(O;\left(d\right)\right)< =\dfrac{4}{\sqrt{10}}\forall m\)

Vậy: Khoảng cách từ O(0;0) đến (d) lớn nhất bằng \(\dfrac{4}{\sqrt{10}}=\dfrac{4\sqrt{10}}{10}=\dfrac{2\sqrt{10}}{5}\) khi m=0

 

ank viet
Xem chi tiết