Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
27 tháng 9 2023 lúc 0:03

Ta có vectơ pháp tuyến của hai đường thẳng là \(\overrightarrow {{n_1}}  = \left( {3;4} \right),\overrightarrow {{n_2}}  = \left( {6;8} \right)\) suy ra hai đường thẳng này song song, nên khoảng cách giữa chúng là khoảng cách từ một điểm bất kì từ đường thẳng này tới đường thẳng kia

Chọn điểm \(A\left( {0;\frac{5}{2}} \right) \in \Delta \), suy ra \(d\left( {\Delta ,\Delta '} \right) = d\left( {A,\Delta '} \right) = \frac{{\left| {6.0 + 8.\frac{5}{2} - 1} \right|}}{{\sqrt {{6^2} + {8^2}} }} = \frac{{19}}{{10}}\)

Vậy khoảng cách giữa hai đường thẳng \(\Delta :3x + 4y - 10 = 0\) và \(\Delta ':6x + 8y - 1 = 0\) là \(\frac{{19}}{{10}}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 6 2017 lúc 17:36

Lấy điểm O(0;0) nằm trên đường thẳng (b). Khi đó ta có:

 

Chọn B

DuaHaupro1
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 3 2022 lúc 23:06

Lấy \(O\left(0;0\right)\) là 1 điểm thuộc \(d_2\)

\(\Rightarrow d\left(d_1;d_2\right)=d\left(O;d_1\right)=\dfrac{\left|6.0-8.0-101\right|}{\sqrt{6^2+\left(-8\right)^2}}=\dfrac{101}{10}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
29 tháng 9 2023 lúc 23:40

a) Ta có: \(\Delta \):\(\frac{x}{{ - 4}} + \frac{y}{2} = 1 \Leftrightarrow x - 2y + 4 = 0\)

Vậy khoảng cách từ O đến \(\Delta \) là: \(d\left( {O;\Delta } \right) = \frac{{\left| {1.0 - 2.0 + 4} \right|}}{{\sqrt {{1^2} + {2^2}} }} = \frac{{4\sqrt 5 }}{5}\)

b) Lấy \(M\left( {0;1} \right) \in {\Delta _1}\)

Suy ra: \(d\left( {{\Delta _1},{\Delta _2}} \right) = d\left( {M,{\Delta _2}} \right) = \frac{{\left| {0 - 1 - 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} = \sqrt 2 \)

DuaHaupro1
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 3 2022 lúc 22:23

\(d\left(M;\Delta\right)=\dfrac{\left|3.2+4.5-m\right|}{\sqrt{3^2+4^2}}=1\)

\(\Leftrightarrow\left|26-m\right|=5\Rightarrow\left[{}\begin{matrix}m=21\\m=31\end{matrix}\right.\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
30 tháng 9 2023 lúc 23:03

Khoảng cách từ điểm \(A\left( {1;1} \right)\) đến đường thẳng \(\Delta :3x + 4y + 13 = 0\) bằng:

\(d\left( {A,\Delta } \right) = \dfrac{{\left| {3.1 + 4.1 + 13} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 4\)

Chọn D

Phạm Thu Quỳnh
Xem chi tiết
Đỗ Thanh Hải
12 tháng 3 2021 lúc 12:15

undefined

NGUYỄN THỊ PHƯƠNG ANH
12 tháng 3 2021 lúc 12:16

undefined

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 12 2019 lúc 9:55

Ta có d 2 : 3 x − 2 y + 1 = 0   ⇔ 6 x − 4 y + 2 = 0  

Ta có điểm A(-1; 1) thuộc đường thẳng d2,.

Vì hai đường thẳng d1 và d2 song song với nhau nên ta có:

d ( d 1 ;    d 2 ) = d ( A ;    d 1 ) =    6. ( − 1 )   − 4. ( − 1 ) + 5 6 2 + ( − 4 ) 2 =   3 52

ĐÁP ÁN D

Cindy
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 2 2021 lúc 22:57

a.

Gọi \(M\left(x;y\right)\in d\)

\(\Rightarrow d\left(M;\Delta\right)=3\Leftrightarrow\dfrac{\left|3x-4y+6\right|}{\sqrt{3^2+4^2}}=3\)

\(\Leftrightarrow\left|3x-4y+6\right|=15\Rightarrow\left[{}\begin{matrix}3x-4y+21=0\\3x-4y-9=0\end{matrix}\right.\)

b.

Giả sử đường thẳng (d2) có dạng \(a\left(x+2\right)+b\left(y-3\right)=0\Leftrightarrow ax+by+2a-3b=0\) (1)

\(\dfrac{\left|3.a-4b\right|}{5\sqrt{a^2+b^2}}=\dfrac{1}{\sqrt{2}}\Leftrightarrow2\left(3a-4b\right)^2=25a^2+25b^2\)

\(\Leftrightarrow7a^2+48ab-7b^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}7a=b\\a=-7b\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(1;7\right);\left(7;-1\right)\)

\(\Rightarrow...\) (bạn tự thế vào (1) và rút gọn)