Khoảng cách từ điểm \(A\left( {1;1} \right)\) đến đường thẳng \(\Delta :3x + 4y + 13 = 0\) bằng:
\(d\left( {A,\Delta } \right) = \dfrac{{\left| {3.1 + 4.1 + 13} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 4\)
Chọn D
Khoảng cách từ điểm \(A\left( {1;1} \right)\) đến đường thẳng \(\Delta :3x + 4y + 13 = 0\) bằng:
\(d\left( {A,\Delta } \right) = \dfrac{{\left| {3.1 + 4.1 + 13} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 4\)
Chọn D
Vectơ nào sau đây là một vectơ pháp tuyến của đường thẳng \(\Delta :2x - 3y + 4 = 0\) ?
A. \(\overrightarrow {{n_1}} = \left( {3;2} \right)\)
B. \(\overrightarrow {{n_2}} = \left( {2;3} \right)\)
C. \(\overrightarrow {{n_3}} = \left( {3; - 2} \right)\)
D. \(\overrightarrow {{n_4}} = \left( {2; - 3} \right)\)
Cho hai đường thẳng: \({\Delta _1}:\sqrt 3 x + y - 4 = 0,{\Delta _2}:x + \sqrt 3 y - 2\sqrt 3 = 0\)
a) Tìm tọa độ giao điểm của hai đường thẳng \({\Delta _1};{\Delta _2}\)
b) Tính số đo góc giữa hai đường thẳng \({\Delta _1};{\Delta _2}\)
Trong mặt phẳng tọa độ Oxy, cho \(A\left( {3;4} \right)\), \(B\left( {2;5} \right)\). Tọa độ của \(\overrightarrow {AB} \) là:
A. \(\left( {1; - 1} \right)\)
B. \(\left( {1;1} \right)\)
C. \(\left( { - 1;1} \right)\)
D. \(\left( { - 1; - 1} \right)\)
Lập phương trình tổng quát và phương trình tham số của đường thẳng d trong mỗi trường hợp sau:
a) d đi qua điểm \(A\left( { - 3;2} \right)\) và có một vectơ pháp tuyến là \(\overrightarrow n = \left( {2; - 3} \right)\)
b) d đi qua điểm \(B\left( { - 2; - 5} \right)\) và có một vectơ chỉ phương là \(\overrightarrow u = \left( { - 7;6} \right)\)
c) d đi qua hai điểm \(C\left( {4;3} \right),D\left( {5;2} \right)\)
Cho tam giác\(A{F_1}{F_2}\) , trong đó\(A\left( {0;{\rm{ }}4} \right),{\rm{ }}{F_1}\left( { - {\rm{ }}3{\rm{ }};{\rm{ }}0} \right),{\rm{ }}{F_2}\left( {3{\rm{ }};{\rm{ }}0} \right)\).
a) Lập phương trình tổng quát của các đường thẳng \(A{F_1}{\rm{ }}v\`a {\rm{ }}A{F_2}\)
b) Lập phương trình đường tròn ngoại tiếp của tam giác\(A{F_1}{F_2}\).
c) Lập phương trình chính tắc của elip (E) có hai tiêu điểm là \({F_1},{F_2}\) sao cho (E) đi qua A.
Quan sát hình 64 và thực hiện các hoạt động sau:
a) Lập phương trình đường thẳng d
b) Lập phương trình đường tròn (C)
c) Lập phương trình tiếp tuyến của đường tròn \(\left( C \right)\) tại điểm \(M\left( {2 + \sqrt 2 ;1 + \sqrt 2 } \right)\)
Lập phương trình đường tròn (C) trong mỗi trường hợp sau:
a) (C) có tâm \(I\left( { - 4;2} \right)\) và bán kính \(R = 3\)
b) \(\left( C \right)\) có tâm \(P\left( {3; - 2} \right)\) và đi qua điểm \(E\left( {1;4} \right)\)
c) \(\left( C \right)\)có tâm \(Q\left( {5; - 1} \right)\) và tiếp xúc với đường thẳng \(\Delta :3x + 4y - 1 = 0\)
d) \(\left( C \right)\) đi qua ba điểm \(A\left( { - 3;2} \right),B\left( { - 2; - 5} \right),D\left( {5;2} \right)\)
Tọa độ tâm I của đường tròn \(\left( C \right):{\left( {x + 6} \right)^2} + {\left( {y - 12} \right)^2} = 81\) là:
A. \(\left( {6; - 12} \right)\)
B. \(\left( { - 6;12} \right)\)
C. \(\left( { - 12;6} \right)\)
D. \(\left( {12; - 6} \right)\)
Trong mặt phẳng tọa độ Oxy, cho tam giác MNP có \(M\left( {2;1} \right),N\left( { - 1;3} \right),P\left( {4;2} \right)\)
a) Tìm tọa độ của các vectơ \(\overrightarrow {OM} ,\overrightarrow {MN} ,\overrightarrow {MP} \)
b) Tính tích vô hướng \(\overrightarrow {MN} .\overrightarrow {MP} \)
c) Tính độ dài các đoạn thẳng \(MN,MP\)
d) Tính \(\cos \widehat {MNP}\)
e) Tìm tọa độ trung điểm I của NP và trọn tâm G của tam giác MNP