Ta có: \(\left( C \right):{\left( {x + 6} \right)^2} + {\left( {y - 12} \right)^2} = 81 \Leftrightarrow {\left( {x - \left( { - 6} \right)} \right)^2} + {\left( {y - 12} \right)^2} = {9^2}\)
=> \(I\left( { - 6;12} \right)\) .
Chọn B
Ta có: \(\left( C \right):{\left( {x + 6} \right)^2} + {\left( {y - 12} \right)^2} = 81 \Leftrightarrow {\left( {x - \left( { - 6} \right)} \right)^2} + {\left( {y - 12} \right)^2} = {9^2}\)
=> \(I\left( { - 6;12} \right)\) .
Chọn B
Lập phương trình đường tròn (C) trong mỗi trường hợp sau:
a) (C) có tâm \(I\left( { - 4;2} \right)\) và bán kính \(R = 3\)
b) \(\left( C \right)\) có tâm \(P\left( {3; - 2} \right)\) và đi qua điểm \(E\left( {1;4} \right)\)
c) \(\left( C \right)\)có tâm \(Q\left( {5; - 1} \right)\) và tiếp xúc với đường thẳng \(\Delta :3x + 4y - 1 = 0\)
d) \(\left( C \right)\) đi qua ba điểm \(A\left( { - 3;2} \right),B\left( { - 2; - 5} \right),D\left( {5;2} \right)\)
Trong mặt phẳng tọa độ Oxy, cho \(A\left( {3;4} \right)\), \(B\left( {2;5} \right)\). Tọa độ của \(\overrightarrow {AB} \) là:
A. \(\left( {1; - 1} \right)\)
B. \(\left( {1;1} \right)\)
C. \(\left( { - 1;1} \right)\)
D. \(\left( { - 1; - 1} \right)\)
Vectơ nào sau đây là một vectơ pháp tuyến của đường thẳng \(\Delta :2x - 3y + 4 = 0\) ?
A. \(\overrightarrow {{n_1}} = \left( {3;2} \right)\)
B. \(\overrightarrow {{n_2}} = \left( {2;3} \right)\)
C. \(\overrightarrow {{n_3}} = \left( {3; - 2} \right)\)
D. \(\overrightarrow {{n_4}} = \left( {2; - 3} \right)\)
Trong mặt phẳng tọa độ Oxy, cho tam giác MNP có \(M\left( {2;1} \right),N\left( { - 1;3} \right),P\left( {4;2} \right)\)
a) Tìm tọa độ của các vectơ \(\overrightarrow {OM} ,\overrightarrow {MN} ,\overrightarrow {MP} \)
b) Tính tích vô hướng \(\overrightarrow {MN} .\overrightarrow {MP} \)
c) Tính độ dài các đoạn thẳng \(MN,MP\)
d) Tính \(\cos \widehat {MNP}\)
e) Tìm tọa độ trung điểm I của NP và trọn tâm G của tam giác MNP
Quan sát hình 64 và thực hiện các hoạt động sau:
a) Lập phương trình đường thẳng d
b) Lập phương trình đường tròn (C)
c) Lập phương trình tiếp tuyến của đường tròn \(\left( C \right)\) tại điểm \(M\left( {2 + \sqrt 2 ;1 + \sqrt 2 } \right)\)
Lập phương trình tổng quát và phương trình tham số của đường thẳng d trong mỗi trường hợp sau:
a) d đi qua điểm \(A\left( { - 3;2} \right)\) và có một vectơ pháp tuyến là \(\overrightarrow n = \left( {2; - 3} \right)\)
b) d đi qua điểm \(B\left( { - 2; - 5} \right)\) và có một vectơ chỉ phương là \(\overrightarrow u = \left( { - 7;6} \right)\)
c) d đi qua hai điểm \(C\left( {4;3} \right),D\left( {5;2} \right)\)
Cho tam giác\(A{F_1}{F_2}\) , trong đó\(A\left( {0;{\rm{ }}4} \right),{\rm{ }}{F_1}\left( { - {\rm{ }}3{\rm{ }};{\rm{ }}0} \right),{\rm{ }}{F_2}\left( {3{\rm{ }};{\rm{ }}0} \right)\).
a) Lập phương trình tổng quát của các đường thẳng \(A{F_1}{\rm{ }}v\`a {\rm{ }}A{F_2}\)
b) Lập phương trình đường tròn ngoại tiếp của tam giác\(A{F_1}{F_2}\).
c) Lập phương trình chính tắc của elip (E) có hai tiêu điểm là \({F_1},{F_2}\) sao cho (E) đi qua A.
Khoảng cách từ điểm \(A\left( {1;1} \right)\) đến đường thẳng \(\Delta :3x + 4y + 13 = 0\) bằng:
A. 1
B. 2
C. 3
D. 4
Cho biết mỗi đường conic có phương trình dưới đây là đường conic dạng nào ( elip, hypebol, parabol) và tìm tọa độ tiêu điểm của đường conic đó.
a) \({y^2} = 18x\)
b) \(\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{25}} = 1\)
c) \(\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{16}} = 1\)