tính giá trị của đa thức 2x^3+3x^2y-2xy-3y^2+2016,biêt 2x+3y=0
Cho tỉ lệ thức \(\dfrac{x}{y}=\dfrac{2}{3}\). Tính giá trị của các biểu thức sau:
\(A=\dfrac{x+5y}{3x-2y}-\dfrac{2x-3y}{4x+5y}\)
\(B=\dfrac{2x^2-xy+3y^2}{3x^2+2xy+y^2}\)
Lời giải:
$\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:
$x=2k; y=3k$
Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.
$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$
tính giá trị của các đa thức sau biết x+y-2=0
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
\(N=x^3-2x^2-xy^2+2xy+2y+2x-2\)
\(P=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
Giúp mình giải bài này:( x^x:mũ số lũy thừa;tiện thể mọi người chỉ mình cách viết số có mũ nha )
1/Thu gọn và tính giá trị đa thức sau tại x=-2,y=4
G= 3x^2y-2xy^2+x^3y^3+3xy^2-2x^2y-2x^3y^3
2/ cho đa thức
A=x^2-3xy-y^2+2x-3y+1 B=-2x^2+xy+2y^2-5x=2y-3
a/tính A+B&A-B
b/ tính giá trị của A&B tại x=-1&y=2
1. G= 3x2y - 2xy2 + x3y3 + 3xy2 - 2x2y - 2x3y3
G = x2y + xy2 - x3y3 = xy (x + y -x2y2) . Khi x= -2 . y=4 ta có G= -2*4( -2 + 4 - (-2)2 * 42 ) = 496
a. B+A =( -2x2 + xy +2y2 -5x +2y - 3) + ( x2 -3xy -y2 +2x -3y +1)= -x2 - 2xy + y2 -3x -y -2
A-B= -( -2x2 +xy + 2y2 -5x +2y -3) + ( x2 -3xy -y2 + 2x -3y +1) = 3x2 -4xy -3y2 +7x -5y +4
Tại x = -1, y =2
A= (-1)2 -3*(-1)*2 -22 +2*(-1) -3*2 +1 = -4
B= -2*(-1)2 + (-1)*2 + 2*22 -5*(-1) + 2*2 -3 = 10
Câu 2 bạn xem lại đề nhé. hình như bạn nhầm đề!
Bài 1
a, Tính giá trị biểu thức: A= 1/2.(1+1/1.3)(1+1/2.4)(1+1/3.5)...(1+1/2015.2017)
b, Tính giá trị biểu thức:B= 2x^2-3x+5 với |x|=1/2
c, Tính giá trị biểu thức:C= 2x-2y+13x^3y^2(x-y)+15(y^2x-x^2y)+(2015/2016)^0 biết x-y=0
d, Tìm x,y biết (2x-1/6)^2 +|3y+12| bé hơn hoặc bằng 0
e, Tìm x,y,z biết: 3x-2y/4=2z-4x/3=4y-3z/2 và x+y+z=18
f, Tìm số nguyên x,y biết x-2xy+y-3=0
g, Cho đa thức f(x)= x^10-101x^9+101x^8-101x^7+...-101x+101. Tính f(100)
h, CMR từ 8 số nguyên dương tùy ý không lớn hơn 20, luôn chọn được ba số x,y,z là độ dài ba cạnh của một tam giác
tính giá trị của các đa thức sau biết x+y-2=0
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
\(N=x^3-2x^2-xy^2+2xy+2y+2x-2\)
\(P=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
\(M=x^2\left(x+y-2\right)-y\left(x+y-2\right)+y+x-2+1\)
\(=1\)
\(N=x^2\left(x-2\right)-xy^2+2xy+2\left(x+y-2\right)+2\)
Ta có : \(x+y-2=0\Rightarrow x+2=-y\)
\(\Rightarrow N=-x^2y-xy^2+2xy+2\)
\(N=-xy\left(x+y-2\right)+2=2\)
\(P=x^3\left(x+y-2\right)+x^2y\left(x+y-2\right)-x\left(x+y-2\right)+3=3\)
tính giá trị của các đa thức sau; biết x+y-2=0
a)M=\(x^3+x^2y^2-2x^2-xy-y^2+3y+x-1\)
b)N=\(x^3-2x^2-xy^2+2xy+2y+2x-2\)
c)P=\(x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
Tui chẳng nghĩ gì về số cúp cả
Biết x+y=0,tính giá trị của đa thức sau :
C=2x+2y+3xy(x+y)+5(x^3y^2)+2
D= 3xy(x+y)+2x^3y+2x^2y^2+5
Cho đa thức M=2x - 3xy² + 1 , a)tính giá trị của M tại x= - 2x - 3xy² +1 b)tính giá trị của M tại x= -2 và y=3 c)Tính (2x - 3y) (3x + 4y);d) (x²y - 5y² + 3xy) (-2xy) MONG MN GIÚP Ạ
a: M=2(-2x-3xy^2+1)-3xy^2+1
=-4x-6xy^2+2-3xy^2+1
=-4x-9xy^2+3
b: Thay x=-2 và y=3 vào M, ta được:
M=2*(-2)-3*(-2)*3^2+1
=-4+1+6*9
=54-3
=51
Bài 1 : Tính giá trị biểu thức sau , biết x+y-2=0
a ) M = x^3+x^2y+2x^2-xy-y^2+3y+x-1
b ) N= x^3-2x^2-xy^2+2xy+2y+2x-2
c ) P = x^4+2x^3y-2x^3+x^2y^2-2x^2y-x*(x+y )+2x+3
Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 \(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
\(M=x^3+x^2y-2x^2-xy-y^2+\left(2y+y\right)+x-\left(-2+1\right)\)
\(M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)+1\)
\(M=\left(x^2.x+x^2.y-2x^2\right)-\left(x.y+y.y-2y\right)+\left(x+y-2\right)+1\)
\(M=x^2.\left(x+y-2\right)-y.\left(x+y-2\right)+\left(x+y-2\right)+1\)
\(M=x^2.0+y.0+0+1\)
\(M=1\)
\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-2\)
\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-\left(-4+2\right)\)
\(N=\left(x^3+x^2y-2x^2\right)-\left(x^2y+xy^2-2xy\right)+\left(2x+2y-4\right)+2\)
\(N=\left(x^2x+x^2y-2x^2\right)-\left(xyx+xyy-2xy\right)+\left(2x+2y-4\right)+2\)
\(N=x^2\left(x+y-2\right)-xy\left(x+y-2\right)+2\left(x+y-2\right)+2\)
\(N=x^2.0-xy.0+2.0+2\)
\(N=2\)
\(P=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
\(P=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left(x^2+xy-2x\right)+3\)\(P=\left(x^3x+x^3y-2x^3\right)+\left(x^2y.x+x^2yy-2x^2y\right)-\left(xx+xy-2x\right)+3\)
\(P=x^3\left(x+y-2\right)+x^2y\left(x+y-2\right)-x\left(x+y-2\right)+3\)
\(P=x^3.0+x^2y.0-x.0+3\)
\(P=3\)
Tích mình nha!