Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 0:39

Áp dụng định lí cosin trong tam giác ABC ta có:

\(B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos A\)

\(\begin{array}{l} \Leftrightarrow B{C^2} = {c^2} + {b^2} - 2.c.b.\cos \alpha \\ \Leftrightarrow BC = \sqrt {{c^2} + {b^2} - 2bc.\cos \alpha } \end{array}\)

Kim Uất Huyền
Xem chi tiết
IS
22 tháng 2 2020 lúc 10:20

a) công thức . \(\frac{đáy.chiềucao}{2}\)

b) Áp dụng định lý pitago ta có

\(BC^2=AB^2+AC^2\)

=> AC^2=\(BC^2-AB^2=^{10^2}-6^2=64\)

=>\(AC=8\)

Khách vãng lai đã xóa
Trịnh Phương Anh
22 tháng 2 2020 lúc 10:23

A)Xét tam giác ABC vuông tại A(gt),có:

SABC=(AB.AC)/2

B)Xét tam giác ABC vuông tại A(gt),có:

AB^2+AC^2=BC^2(ĐL Pytago)

Thay số:36+AC^×=100

<=>AC=căn64=8cm

Ta có:SABC=(AB.AC)/2

Thay số:SABC=24cm^2

Mà SABC=(AH.BC)/2

=>(AH.BC)/2=24

Thay số:AH=24.2:10=4,8cm

SABC=24CM^2(cmt)

Khách vãng lai đã xóa
Phan uyển nhi
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 5 2021 lúc 20:52

\(bc.cosA=bc\left(\dfrac{b^2+c^2-a^2}{2bc}\right)=\dfrac{b^2+c^2-a^2}{2}\)

Tương tự: \(ac.cosB=\dfrac{a^2+c^2-b^2}{2}\) ; \(ab.cosC=\dfrac{a^2+b^2-c^2}{2}\)

\(\Rightarrow Q=\dfrac{a^2+b^2+c^2}{2S}\ge\dfrac{\left(a+b+c\right)^2}{6S}=\dfrac{4p^2}{6\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}}\)

\(Q\ge\dfrac{2p\sqrt{p}}{3\sqrt{\left(p-a\right)\left(p-b\right)\left(p-c\right)}}\ge\dfrac{2p\sqrt{p}}{3\sqrt{\left(\dfrac{3p-\left(a+b+c\right)}{3}\right)^3}}=\dfrac{2p\sqrt{p}}{3\sqrt{\dfrac{p^3}{27}}}=2\sqrt{3}\)

Hồ Thị Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 10 2021 lúc 15:10

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=10(cm)

ninh binh Fpt
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 5 2021 lúc 21:43

a.

\(P=cos120^0+cos120^0+cos120^0=-\dfrac{3}{2}\)

b.

\(A=\dfrac{\dfrac{sinx}{cosx}-\dfrac{cosx}{cosx}}{\dfrac{sinx}{cosx}+\dfrac{cosx}{cosx}}=\dfrac{tanx-1}{tanx+1}=\dfrac{2-1}{2+1}=\dfrac{1}{3}\)

c.

\(A=\dfrac{cos\left(720+30\right)+sin\left(360+60\right)}{sin\left(-360+30\right)-cos\left(-360-30\right)}=\dfrac{cos30+sin60}{sin30-cos30}=-3-\sqrt{3}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
25 tháng 9 2023 lúc 16:35

a) Diện tích \({S_1}\) của tam giác IAB là: \({S_1} = \frac{1}{2}r.AB = \frac{1}{2}r.c\)

Diện tích \({S_2}\) của tam giác IAC là: \({S_2} = \frac{1}{2}r.AC = \frac{1}{2}r.b\)

Diện tích \({S_3}\) của tam giác IBC là: \({S_3} = \frac{1}{2}r.BC = \frac{1}{2}r.a\)

b) Diện tích S của tam giác ABC là:

 \(\begin{array}{l}S = {S_1} + {S_2} + {S_3} = \frac{1}{2}r.c + \frac{1}{2}r.b + \frac{1}{2}r.a = \frac{1}{2}r.(c + b + a)\\ \Leftrightarrow S = \frac{{r(a + b + c)}}{2}\end{array}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 15:21

Định lí cosin: Trong tam giác ABC

\(\begin{array}{l}{a^2} = {b^2} + {c^2} - \,2b\,c.\cos A\quad (1)\\{b^2} = {a^2} + {c^2} - \,2a\,c.\cos B\quad (2)\\{c^2} = {b^2} + {a^2} - \,2ab.\cos C\quad (3)\end{array}\)

Ta có \((1) \Leftrightarrow 2bc\cos A = {b^2} + {c^2} - {a^2}\, \Leftrightarrow \cos A = \frac{{{b^2} + {c^2} - {a^2}\,}}{{2b\,c}}.\)

Tương tự từ (2) và (3) ta suy ra \(\cos B = \frac{{{a^2} + {c^2} - {b^2}\,}}{{2a\,c}}\); \(\cos C = \frac{{{b^2} + {a^2} - {c^2}\,}}{{2b\,a}}\)

Thu Hà
Xem chi tiết
Vũ Trọng Nghĩa
9 tháng 6 2016 lúc 3:05

\(AB^2=AH.BC\Rightarrow BC=\frac{AB^2}{AH}=\frac{7,5^2}{6}=9,375\)

áp dụng định lí Pytago tính được AC = 5,625

tính cosB và cos C thì quá dễ rồi. bạn làm tiếp nhé