Cho Hình thang cân ABCD(AB//CD)và O là giao điểm của 2 đường chéo.Từ D và C kẻ các đường thẳng tương ứng song song với AC và BD,chúng cắt nhau tại M .Cmr Om vuông góc với Cd
Bài 2:
Xét ΔADC có OM//DC
nen OM/DC=AM/AD(1)
Xét ΔBDC có ON//DC
nên ON/DC=BN/BC(2)
Xét hình thag ABCD có MN//AB//CD
nên AM/AD=BN/BC(3)
Từ (1) (2)và (3) suy ra OM=ON
cho hình thang ABCD( AB//CD và AB<CD) . gọi O là giao điểm 2 cạnh bên AD và BC. Qua O kẻ đường thẳng song song với 2 cạnh đáy, đường thẳng này cắt Ac tại M, cắt BD tại N. Chừng minh rằng OM=ON
Bài 2:
Xét ΔADC có OM//DC
nen OM/DC=AM/AD(1)
Xét ΔBDC có ON//DC
nên ON/DC=BN/BC(2)
Xét hình thag ABCD có MN//AB//CD
nên AM/AD=BN/BC(3)
Từ (1) (2)và (3) suy ra OM=ON
Bài 1: Cho hình thang cân ABCD (BC//AD). Từ B,C kẻ các đường thẳng tương ứng song song với AC,BD cắt nhau tại E. Gọi O là giao điểm của AC,BD. CMR:
a) E và O đối xứng nhau qua BC
b) OE là trục đối xứng của hình thang cân ABCD
Bài 2: Cho đường thẳng d và 2 điểm A,BB nằm khác phía với nhau. Hãy xác định điểm M trên d sao cho |MA-MB| lớn nhất.
bài 1 Cho hình thang ABCD có AB//CD và CD>AB . Gọi O là giao điểm của AC và BD cắt đương thẳng kẻ từ A và B lần lượt song song vơi BC và AD , cắt các đường chéo BD và AC tương ứng với F và E
a, EF//AB
b, AB2= EF.CD
Bài 2 Cho góc nhọn xoy trên cạnh ox lấy M , trên cạnh oy lấy N . GỌi A là điểm nằm trên đoạn MN , qua A kẻ đường thẳng song song ox cắt oy ở Q với đường thẳng song song với oy cắt ox ở P . CMr
OB/OM + OQ/ON=1
Giúp mình với tối mai đi hc rồi
Do AF // BC =) \(\frac{AO}{OC}\)= \(\frac{\text{O}F}{OB}\) (1)
Do BE // AD =) \(\frac{OE}{OA}\)= \(\frac{OB}{O\text{D}}\) (2)
Do AB // CD =) \(\frac{OA}{OC}\) = \(\frac{OB}{O\text{D}}\) (3)
Từ (1),(2) và (3) =) \(\frac{OE}{OA}\)= \(\frac{\text{O}F}{OB}\)=) EF // AB
cho Hình thang ABCD có AB // CD O là giao điểm của AC và BD a, chứng mình OA/AC = OB/BD. b, Kẻ đường thẳng đi qua O song song với AD cắt CD tại E. Đường thẳng đi qua O song song với BC cắt CD tại F. Chứng minh DE = CF. c, Gọi I là giao điểm của AD và FO, J là giao điểm của BC và EO. Chứng mình IJ // AB. d, Gọi H là giao điểm của AD và BC K là trung điểm của EF. chứng mminhf O,H,K thẳng hàng
a: Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)
\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)
Do đó: ΔOAB\(\sim\)ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)
=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)
=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)
=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)
=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)
=>\(\dfrac{OA}{AC}=\dfrac{OB}{BD}\)(2)
b: Xét ΔCAD có OE//AD
nên \(\dfrac{DE}{DC}=\dfrac{AO}{AC}\)(1)
Xét ΔBDC có OF//BC
nên \(\dfrac{CF}{CD}=\dfrac{BO}{BD}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{DE}{DC}=\dfrac{CF}{CD}\)
=>DE=CF
Cho hình thang ABCD(AB//CD,AB<CD).Có O là giao điểm của 2 đường chéo.Qua O kẻ 2 đường thẳng song song với 2 đáy cắt AD tại M,cắt BC tại N.
a) So sánh các tỉ số OM/CD và AO/AC,ON/CD và OB/BD.
b) Chứng minh OM=ON.
c) Tính MN biết AB=4cm CD=6cm.
d) Gọi E là giao điểm của 2 đường thẳng AD và BC.Chứng minh E,O và trung điểm của BC thẳng hàng.
e) Qua B kẻ đường thẳng song song với AD cắt AC tại K. Chứng minh OA mũ 2 = OK*OC
a: OM//CD
=>OM/CD=AO/AC=AM/AD
ON//DC
=>ON/CD=BO/BD=BN/BC
b: OM/CD=ON/CD(AM/AD=BN/BC)
=>OM=ON
c: 2/MN=1/AB+1/CD
=>2/MN=1/4+1/6=3/12+2/12=5/12
=>MN/2=12/5
=>MN=24/5=4,8cm
Cho hình thang ABCD (AB // CD) có O là giao điểm của hai đường chéo AC và BD. Qua A, kẻ đường thẳng song song với BC cắt BD tại E. Qua B, kẻ đường thẳng song song với AD cắt AC tại F.
a) Chứng minh: EF // CD.
b) Chứng minh: AB2 = CD . EF
Cho hình vuông ABCD, trên AB lấy I bất kì. Từ I kẻ đường thẳng song song AC và đường thẳng song song AD. Hai đương này lân lượt cắt BC và CD tại K và M. CMR:
a) AICk là hình thang cân
b) AIMD là hình chữ nhật
c) góc KOM = 90 độ (O là giao điểm cỉa AC và BD)
d) Tìm I trên AB để AIKO là hình bình hành
Cho hình thang ABCD, đáy lớn CD, gọi O là giao điểm của AC và BD, các đường thẳng kẻ từ A và B lần lượt song song với BC và AD cắt đg chéo BD và AC tương ứng ở E,F.
a, chứng minh EF song song AB
b, chứng minh AB^2=EF*CD
Bạn xem lời giải của cô Huyền ở đây nhé:
Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath
Tham khảo link này: https://olm.vn/hoi-dap/detail/81945110314.html