Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Ngọc Hà Anh
Xem chi tiết
huỳnh thị ngọc ngân
15 tháng 2 2016 lúc 19:32

1. * ta phải thu thập số liệu về màu sắc ưa thích của mỗi bạn trong lớp

  * trình bày số liệu trong bảng số liệu thống kê ban đầu

2. * số lần xuất hiện của 1 giá trị trong dãy giá trị của dấu hiệu là tần số của giá trị đó

  * tổng các tần số = số các giá trị

3. * bảng tần số giúp người điều tra có những nhận xét chung về sự phân phối các giá trị của dấu hiệu và tiện lợi cho việc tính toán sau này

Lê Ngọc Hà Anh
15 tháng 2 2016 lúc 19:35

♥♡♥♡♥♡♥iu iu thanks bạn nha

tranthaituan
10 tháng 5 2020 lúc 19:37

Muốn thu thập số liệu của một dấu hiệu nào đó (kí hiệu là X) ta cần phân chia đối tượng thành các phần có thể nghiên cứu tức là phân thành các đơn vị điều tra. Đánh số hay đặt tên (nếu chưa có) các đơn vị điều tra. Định ra một thứ tự cho các đơn vị điều tra để nghiên cứu dấu hiệu (cân, đo, đong, đếm) để xác định giá trị của dấu hiệu của mỗi đơn vị điều tra. Lập bảng số liệu thống kê ban đầu có thể cần hai cột hoặc dòng:

- Tên đơn vị điều tra

- Giá trị của dấu hiệu

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 6 2017 lúc 3:27

Các đỉnh của đường gấp khúc tần số có tọa độ là ( c i ;   n i ), với c i  là giá trị đại diện của lớp thứ i, n i   là tần số của lớp thứ i. Từ đó suy ra: các đỉnh của đường gấp khúc tần số là các trung điểm của các cạnh phía trên của các cột (các hình chữ nhật) của biểu đồ tần số hình cột

Đường gấp khúc  I 1   I 2   I 3 I 4   I 5   I 6  với  I 1 ,   I 2 ,   I 3 ,   I 4 ,   I 5 ,   I 6  lần lượt là trung điểm của các đoạn thẳng  A 1 B 1 ,   A 2 B 2 ,   A 3 B 3 A 4 B 4 ,   A 5 B 5 ,   A 6 B 6

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 11 2019 lúc 3:23

Chọn B.

Các giá trị khác nhau: 1; 2; 3; 4; 5; 6

Vậy có 6 giá trị khác nhau trong mẫu số liệu trên.

nguyễn trung kiên
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 6 2023 lúc 8:09

a: Số các giá trị là 20

Số các giá trị khác nhau là 10

b: loading...

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 0:11

a) Không thể tìm được giá trị chính xác cho mốt của mẫu số liệu gốc về thời gian xem ti vi của học sinh

b) Tần số lớn nhất là 16 nên nhóm chứa mốt là [5;10)

Ta có \(j = 2,\;{a_2} = 5,\;{m_2} = 16,\;{m_1} = 8;\;{m_3} = 4,\;h = 5.\) Do đó,

                 \({M_0} = 5 + \frac{{16 - 8}}{{\left( {16 - 8} \right) + \left( {16 - 4} \right)}} \times 5 = 7\).

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 14:56

a) Sắp xếp lại dãy số liệu theo thứ tự không giảm:

Tứ phân vị thứ nhất là: \(\frac{1}{2}\left( {{x_5} + {x_6}} \right) = \frac{1}{2}\left( {11 + 11} \right) = 11\)

Tứ phân vị thứ hai là: \(\frac{1}{2}\left( {{x_{10}} + {x_{11}}} \right) = \frac{1}{2}\left( {14 + 14} \right) = 14\)

Tứ phân vị thứ ba là: \(\frac{1}{2}\left( {{x_{15}} + {x_{16}}} \right) = \frac{1}{2}\left( {21 + 22} \right) = 21,5\)

b)

c) Do số trận đấu là số nguyên nên ta hiệu chỉnh như sau:

Tổng trận đấu là: \(n = 4 + 8 + 2 + 6 = 20\).

Gọi \({x_1};{x_2};...;{x_{20}}\) là điểm số của các trận đấu được xếp theo thứ tự không giảm.

Ta có:

\({x_1},...,{x_4} \in \begin{array}{*{20}{c}}{\left[ {5,5;10,5} \right)}\end{array};{x_5},...,{x_{12}} \in \begin{array}{*{20}{c}}{\left[ {10,5;15,5} \right)}\end{array};{x_{13}},{x_{14}} \in \begin{array}{*{20}{c}}{\left[ {15,5;20,5} \right)}\end{array};{x_{15}},...,{x_{20}} \in \begin{array}{*{20}{c}}{\left[ {20,5;25,5} \right)}\end{array}\)

• Tứ phân vị thứ hai của dãy số liệu là: \(\frac{1}{2}\left( {{x_{10}} + {x_{11}}} \right)\)

Ta có: \(n = 20;{n_m} = 8;C = 4;{u_m} = 10,5;{u_{m + 1}} = 15,5\)

Do \({x_{10}},{x_{11}} \in \begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{\left[ {10,5;15,5} \right)}\end{array}}\end{array}\) nên tứ phân vị thứ hai của dãy số liệu là:

\({Q_2} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 10,5 + \frac{{\frac{{20}}{2} - 4}}{8}.\left( {15,5 - 10,5} \right) = 14,25\)

• Tứ phân vị thứ nhất của dãy số liệu là: \(\frac{1}{2}\left( {{x_5} + {x_6}} \right)\).

Ta có: \(n = 20;{n_m} = 8;C = 4;{u_m} = 10,5;{u_{m + 1}} = 15,5\)

Do \({x_5},{x_6} \in \begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{\left[ {10,5;15,5} \right)}\end{array}}\end{array}\) nên tứ phân vị thứ nhất của dãy số liệu là:

\({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 10,5 + \frac{{\frac{{20}}{4} - 4}}{8}.\left( {15,5 - 10,5} \right) = 11,125\)

• Tứ phân vị thứ ba của dãy số liệu là: \(\frac{1}{2}\left( {{x_{15}} + {x_{16}}} \right)\).

Ta có: \(n = 20;{n_j} = 6;C = 4 + 8 + 2 = 14;{u_j} = 20,5;{u_{j + 1}} = 25,5\)

Do \({x_{15}},{x_{16}} \in \begin{array}{*{20}{c}}{\left[ {20,5;25,5} \right)}\end{array}\) nên tứ phân vị thứ ba của dãy số liệu là:

\({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right) = 20,5 + \frac{{\frac{{3.20}}{4} - 14}}{6}.\left( {25,5 - 20,5} \right) \approx 21,3\)

Buddy
Xem chi tiết
Kiều Sơn Tùng
22 tháng 9 2023 lúc 13:55

Tham khảo:

a) Sắp xếp lại dãy số liệu theo thứ tự không giảm:

Số trung bình của số liệu là: \(\bar x \approx 15821,87\)

Tứ phân vị thứ nhất là: \({x_8} = 15139\)

Tứ phân vị thứ hai là: \({x_{16}} = 15685\)

Tứ phân vị thứ ba là: \({x_{24}} = 16586\)

Mẫu số liệu có 1 giá trị ngoại lệ.

b)

c) Ta có:

• Số ca nhiễm mới SARS-CoV-2 trung bình trong tháng 12/2021 tại Việt Nam là:

\(\bar x = \frac{{14.14,74 + 14.16,25 + 2.17,75 + 0.19,25 + 1.20,75}}{{31}} \approx 15,81\)

• Gọi \({x_1};{x_2};...;{x_{31}}\) số ca nhiễm mới SARS-CoV-2 mỗi ngày trong tháng 12/2021 tại Việt Nam được xếp theo thứ tự không giảm.

Ta có: \({x_1},...,{x_{14}} \in \begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{\begin{array}{*{20}{c}}{\left[ {14;15,5} \right)}\end{array}}\end{array}}\end{array};{x_{15}},...,{x_{28}} \in \begin{array}{*{20}{l}}{\begin{array}{*{20}{c}}{\left[ {15,5;17} \right)}\end{array}}\end{array};{x_{29}},{x_{30}} \in \begin{array}{*{20}{c}}{\left[ {17;18,5} \right)}\end{array};{x_{31}} \in \begin{array}{*{20}{l}}{\begin{array}{*{20}{c}}{\left[ {20;21,5} \right)}\end{array}}\end{array}\)

Tứ phân vị thứ hai của dãy số liệu là: \({x_{16}}\)

Ta có: \(n = 31;{n_m} = 14;C = 14;{u_m} = 15,5;{u_{m + 1}} = 17\)

Do \({x_{16}} \in \begin{array}{*{20}{c}}{\left[ {15,5;17} \right)}\end{array}\) nên tứ phân vị thứ hai của dãy số liệu là:

\({Q_2} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 15,5 + \frac{{\frac{{31}}{2} - 14}}{{14}}.\left( {17 - 15,5} \right) \approx 15,66\)

Tứ phân vị thứ nhất của dãy số liệu là: \({x_8}\).

Ta có: \(n = 31;{n_m} = 14;C = 0;{u_m} = 14;{u_{m + 1}} = 15,5\)

Do \({x_8} \in \begin{array}{*{20}{c}}{\left[ {14;15,5} \right)}\end{array}\) nên tứ phân vị thứ nhất của dãy số liệu là:

\({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 14 + \frac{{\frac{{31}}{4} - 0}}{{14}}.\left( {15,5 - 14} \right) \approx 14,83\)

Tứ phân vị thứ ba của dãy số liệu là: \({x_{24}}\).

Ta có: \(n = 31;{n_j} = 14;C = 14;{u_j} = 15,5;{u_{j + 1}} = 17\)

Do \({x_{24}} \in \begin{array}{*{20}{c}}{\left[ {15,5;17} \right)}\end{array}\) nên tứ phân vị thứ ba của dãy số liệu là:

\({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right) = 15,5 + \frac{{\frac{{3.31}}{4} - 14}}{{14}}.\left( {17 - 15,5} \right) \approx 16,49\)

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 12:58

Tham khảo:

Khoảng biến thiên của mẫu số liệu trên là \(R = 29 - 10 = 19\).

Độ dài mỗi nhóm \(L > \frac{R}{k} = \frac{{19}}{5} = 3,8\).

Ta chọn \(L = 4\) và chia dữ liệu thành các nhóm: \(\left[ {10;14} \right),\left[ {14;18} \right),\left[ {18;22} \right),\left[ {22;26} \right),\left[ {26;30} \right)\).

Khi đó ta có bảng tần số ghép nhóm sau:

Lan Mỹ Anh
Xem chi tiết
Đỗ Nguyễn Như Bình
3 tháng 2 2017 lúc 11:53

- Muốn thu thập các số liệu về một vấn đề mà mình quan tâm, chẳng hạn như màu sắc mà mỗi bạn trong lớp ưa thích thì em phải lập bảng số liệu thống kê ban đầu và trình bày kết quả thu được theo mẫu bảng tần số.

- Tần số của một giá trị là số lần xuất hiện một giá trị trong dãy giá trị của dấu hiệu. Có nhận xét về tổng các tần số là: Tổng các tần số bằng số các đơn vị điều tra.

- Bảng ''tần số'' có thuận lợi hơn so với bảng số liệu thống kê ban đầu là: Bảng ''tần số'' giúp người điều tra dễ có những nhận xét chung về sự phân phối các giá trị của dấu hiệu và tiện lợi cho việc tính toán sau này.

- Muốn tính số trung bình cộng của một dấu hiệu:

+ Nhân từng giá trị ứng với tần số tương ứng.

+ Cộng tất cả các tích vừa tìm đc.

+ Chia tổng đó cho số các giá trị (tức tổng các tần số).

- Các bước tính giá trị trung bình của một dấu hiệu là:

Bước 1: Nhân từng giá trị ứng với tần số tương ứng.

Bước 2: Cộng tất cả các tích vừa tìm đc

Bước 3: Chia tổng đó cho số các giá trị (tức tổng các tần số)

- Ý nghĩa của số trung bình cộng là: thường được làm ''đại diện'' cho dấu hiệu, đặc biệt là khi muốn so sánh các dấu hiệu cùng loại.

- Khi các giá trị của dấu hiệu có khoảng chênh lệch rất lớn đối với nhau thì không nên lấy số trung bình cộng làm đại diện cho dấu hiệu đó.

Chúc bn học tốt!