Hãy so sánh tổng độ dài hai cạnh của tam giác trong Hình 4 với độ dài cạnh còn lại.
Tam giác ABC có độ dài ba cạnh tỉ lệ với 3, 4, 5 và độ dài cạnh lớn nhất nhỏ hơn tổng độ dài hai cạnh còn lại là 10 cm. Hãy tính độ dài ba cạnh của tam giác ABC.
Giải:
Gọi 3 cạnh của tam giác ABC lần lượt là a, b, c ( a > b > c > 0 )
Ta có: \(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}\) và a - c = 10
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}=\frac{a-c}{5-3}=\frac{10}{2}=5\)
+) \(\frac{a}{5}=5\Rightarrow a=25\)
+) \(\frac{b}{4}=5\Rightarrow b=20\)
+) \(\frac{c}{3}=5\Rightarrow c=15\)
Vậy 3 cạnh của tam giác lần lượt là 15 cm, 20 cm và 25 cm
Gọi độ dài các cạnh của tam giác lần lượt là a , b , c (theo thứ tự nhỏ đến lớn)
Theo đề bài , ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và c + 10 = a + b
Áp dụng tính chất dãy tỉ số bằng nhau , ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{c+10}{7}\)
=> \(\frac{c+10}{7}=\frac{c}{5}\)
=> 5(c + 10) = 7c
=> 5c + 50 = 7c
=> 50 = 2c
=> c = 25
=> a + b = 25 + 10 = 35
Áp dụng tính chất dãy tỉ số , ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{35}{7}=5\)
=> a = 3.5 = 15
b = 4.5 = 20
Gọi các cạnh lần lượt là a ; b ; c ta có a/3 = b/4=c/5
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
a/3 = b/4 = c/5 = \(\frac{b+c-a}{4+5-3}\) = 10/6 cm =5/3 cm
từ đó suy ra :
a/3 = 5/3 cm\(\Rightarrow\) a = 5 cm
b/4 = 5/3 cm \(\Rightarrow\) b = 5/3cm*4=20/3cm
c/5 = 5/3 cm\(\Rightarrow\) c = 5/3 cm *5 =25/3 cm
Vậy a = 5 cm;b = 20/3 cm ; c = 25/3 cm
Có hay không một tam giác có độ dài ba cạnh tỉ lệ với các số 3 : 4 : 9 ?
Chú ý : Trong một tam giác, tổng độ dài hai cạnh bao giờ cũng lớn hơn độ dài cạnh còn lại ?
Gọi độ dài 3 cạnh của tam giác thứ tự là a, b, c.
Theo đề bài ta có: a3=b4=c9a3=b4=c9
Đặt các tỉ số trên là k. Ta có:
a3=k⇒a=3ka3=k⇒a=3k
b4=k⇒b=4kb4=k⇒b=4k
c9=k⇒c=9kc9=k⇒c=9k
Suy ra: a + b = 3k + 4k = 7k < 9k
Điều này mâu thuẫn (một cạnh tam giác bao giờ cũng nhỏ hơn tổng hai cạnh còn lại).
Vậy không có tam giác nào có 3 cạnh tỉ lệ với 3; 4; 9.
Có hay không một tam giác có độ dài ba cạnh tỉ lệ với các số 3;4;9?
Chú ý: Trong một tam giác tổng độ dài hai cạnh bao giờ cũng lớn hơn độ dài cạnh còn lại
Gọi độ dài 3 cạnh của tam giác thứ tự là a,b,c (a > 0; b > 0; c > 0).
Vì độ dài 3 cạnh tỉ lệ với 3, 4, 9 nên:
Suy ra: a + b = 3k + 4k = 7k < 9k (hay a + b < c)
Điều này mâu thuẫn (một cạnh tam giác bao giờ cũng nhỏ hơn tổng hai cạnh còn lại)
Vậy không có tam giác nào có 3 cạnh tỉ lệ 3;4;9.
Các cạnh x, y, z của một tam giác tỷ lệ với 2; 4; 5. Tìm độ dài các cạnh của tam giác đó biết tổng độ dài cạnh lớn nhất và cạnh nhỏ nhất hơn độ dài cạnh còn lại là 20cm.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+c-b}{2+5-4}=\dfrac{20}{3}\)
Do đó: a=40/3; b=80/3; c=100/3
Biết độ dài ba cạnh của một tam giác tỉ lệ với 3 ;4 ;5. Tính độ dài các cạnh của một tam giác biết : a) Chu vi của tam giác là 48m. b) Tổng độ dài cạnh lớn nhất và cạnh nhỏ nhất hơn cạnh còn lại 20m.
Với bộ ba thanh tre ghép lại được thành một tam giác trong HĐ1, em hãy so sánh độ dài của thanh tre bất kì với tổng độ dài 2 thanh còn lại.
Ta có: 10 + 20 = 30 > 25
10 + 25 = 35 > 20
20 + 25 = 45 > 10
Vậy độ dài của thanh tre bất kì luôn nhỏ hơn tổng độ dài 2 thanh còn lại.
các cạnh x y z của 1 tam giác tỷ lệ với 2 4 5.Tìm độ dài của tam giác đó biết tổng độ dài cạnh lớn nhất và cạnh nhỏ nhất hơn độ dài cạnh còn lại là 20cm.
Vì các cạnh x,y,z của 1 tam giác tỉ lệ với 2;4;5
=> \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}\)
Vì tổng độ dài cạnh lớn nhất và cạnh nhỏ nhất hơn độ dài cạnh còn lại là 20cm
=> (x+z)-y=20 (cm)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{x+z-y}{2+5-4}=\frac{20}{3}\left(cm\right)\)
Từ \(\frac{x}{2}=\frac{20}{3}=>x=\frac{40}{3}\)
Từ \(\frac{y}{4}=\frac{20}{3}=>y=\frac{80}{3}\)
Từ \(\frac{z}{5}=\frac{20}{3}=>z=\frac{100}{3}\)
một hình tam giác có tổng độ dài hai cạnh là 45 m . Cạnh còn lại có độ dài bằng 1/3 tổng độ dài 2 cạnh đó
1/3 là một phần ba nha các bạn
Biết độ dài ba cạnh của một tam giác tỉ lệ thuận với 3; 4; 5. Biết tổng độ dài của cạnh lớn nhất và cạnh nhỏ nhất lớn hơn cạnh còn lại là 16m . Tính cạnh nhỏ nhất của tam giác
A. 16m
B. 12m
C. 20m
D. 10m
Gọi x,y,z là ba cạnh của tam giác (x,y,z > 0)
Gỉa sử x,y,z tỉ lệ thuận với 3;4;5 ta có: x 3 = y 4 = z 5
Thì x là cạnh nhỏ nhất và z là cạnh lớn nhất của tam giác . Khi đó theo bài ta có x + z - y = 16
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x 3 = y 4 = z 5 = x + y − z 3 − 4 + 5 = 16 4 = 4
Do đó x = 4.3 = 12
Vậy cạnh nhỏ nhất của tam giác là 12m
Đáp án cần chọn là B