phan tich da thuc thanh nhan tu
a) x^3+x+2
b) x^3+3x^2-4
c) x^4+x^3+6x^2+5x+5
phan tich da thuc thanh nhan tu : a) 3x^2 - 22xy + 4x + 8y + 7x^2 + 1 ; b) 12x^2 + 5x - 12y^2 + 12y - 10xy - 3 ; c)x^4 + 6x^3 + 11x^2 + 6x + 1
phan tich da thuc thanh nhan tu :
a) x3-5x2+5x-5
b) x3+42+x-6
c) x3+ y3+6x2+12x +8
a: Sửa đề: x^3-x^2+5x-5
=x^2(x-1)+5(x-1)
=(x-1)(x^2+5)
b: x^3+4x^2+x-6
=x^3-x^2+5x^2-5x+6x-6
=(x-1)(x^2+5x+6)
=(x-1)(x+2)(x+3)
c: \(=\left(x+2\right)^3+y^3\)
\(=\left(x+2+y\right)\left(x^2+4x+4-xy-2y+y^2\right)\)
phan tich da thuc thanh nhan tu a. x^3+x+2
b, x^4+5x^3+10x-4
\(x^3+x+2=\left(x^3+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1+1\right)\)
\(=\left(x+1\right)\left(x^2-x+2\right)\)
\(b,x^4+5x^3+10x-4=\left(x^4-4\right)+\left(5x^3-10x\right)\)\(=\left(x^2+2\right)\left(x^2-2\right)+5x\left(x^2+2\right)\)
\(=\left(x^2+2\right)\left(x^2-2+5x\right)\)
Phan tich da thuc thanh nhan tu
a,(x2+3x+1)(x2+3x-3)-5
b,(3x-2)2 (6x-5)(6x-3)-5
c,x4+6x3+11x2+6x+1
d,x4+5x2+9
f,a3(c-b2)+b3(a-c2)+c3(b-a2)+abc(abc-1)
Đặt \(x^2+3x+1=t\)
\(\left(x^2+3x+1\right)\left(x^2+3x-3\right)-5\)
\(=t\left(t-4\right)-5\)
\(=t^2-4t-5\)
tự làm nốt ý này nhé.
những ý kia lát nx mình làm.
d) \(x^4+5x^2+9\).Đặt \(x^2=t\) thì:
\(x^4+5x^2+9=t^2+5t+9\)
Làm nốt ý này nhé bạn! Ý kia chút nữa rảnh làm!
b) \(\left(3x-2\right)^2\left(6x-5\right)\left(6x-3\right)-5\)
\(=\left(3x-2\right)^2\left(6x-5\right)\left(6x-3\right)-\left(\sqrt{5}\right)^2\)
\(=\left(3x-2+\sqrt{5}\right)\left(3x-2-\sqrt{5}\right)\left(6x-5\right)\left(6x-3\right)\)
phan tich da thuc thanh nhan tu (x+1)(x+2)(x+4)(x+5)-40
b)2x3+3x2+6x+5
c)x4-4x3-19x7+106x-120
phan tich da thuc thanh nhan tu (x+1)(x+2)(x+4)(x+5)-40
b)2x3+3x2+6x+5
c)x4-4x3-19x7+106x-120
Phan tich da thuc thanh nhan tu
3x^2-11x+6
x^2-6x+5
x^4+x^2+1
x^4-4x^2+3
6x^2+7xy+2y^2
(*)\(3x^2-11x+6=3x^2-2x-9x+6=x\left(3x-2\right)-3\left(3x-2\right)=\left(x-3\right)\left(3x-2\right)\)
(*)\(x^2-6x+5=x^2-x-5x+5=x\left(x-1\right)-5\left(x-1\right)=\left(x-5\right)\left(x-1\right)\)
(*)\(x^4+x^2+1=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2=\left(x^2+1+x\right)\left(x^2+1-x\right)\)
(*)\(x^4-4x^2+3=x^4-x^2-3x^2+3=x^2\left(x^2-1\right)-3\left(x^2-1\right)=\left(x+1\right)\left(x-1\right)\left(x^2-3\right)\)
(*)\(6x^2+7xy+2y^2=6x^2+4xy+3xy+2y^2=2x\left(3x+2y\right)+y\left(3x+2y\right)=\left(2x+y\right)\left(3x+2y\right)\)
a, \(3x^2-11x+6=3x^2-2x-9x+6=x\left(3x-2\right)-3\left(3x-2\right)=\left(3x-2\right)\left(x-3\right)\)
b, \(x^2-6x+5=x^2-x-5x+5=x\left(x-1\right)-5\left(x-1\right)=\left(x-1\right)\left(x-5\right)\)
c, \(x^4+x^2+1=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
d, \(x^4-4x^2+3=x^4-4x^2+4-1=\left(x^2-2\right)^2-1=\left(x^2-1\right)\left(x^2-3\right)=\left(x+1\right)\left(x-1\right)\left(x^2-3\right)\)
e, \(6x^2+7xy+2y^2=6x^2+3xy+4xy+2y^2=3x\left(2x+y\right)+2y\left(2x+y\right)=\left(2x+y\right)\left(3x+2y\right)\)
phan tich da thuc thanh nhan tu 6x4+x3-3x2-17x-5
phan tich da thuc thanh nhan tu
3x^4-48
x^4-8x
x^3-6x^2+9x
\(3x^4-48\)
\(=\left(3x^4-6x^3\right)+\left(6x^3-12x^2\right)+\left(12x^2-24x\right)+\left(24x-48\right)\)
\(=3x^3\left(x-2\right)+6x^2\left(x-2\right)+12x\left(x-2\right)+24\left(x-2\right)\)
\(=\left(x-2\right)\left[\left(3x^3+6x^2\right)+\left(12x+24\right)\right]\)
\(=\left(x-2\right)\left[3x^2\left(x+2\right)+12\left(x+2\right)\right]\)
\(=\left(x-2\right)\left(x+2\right)\left(3x^2+12\right)\)
\(x^4-8x\)
\(=x\left(x^3-8\right)\)
\(=x\left[\left(x^3-2x^2\right)+\left(2x^2-4x\right)+\left(4x-8\right)\right]\)
\(=x\left[x^2\left(x-2\right)+2x\left(x-2\right)+4\left(x-2\right)\right]\)
\(=x\left(x-2\right)\left(x^2+2x+4\right)\)
\(x^3-6x^2+9x\)
\(=\left(x^3-3x^2\right)-\left(3x^2-9x\right)\)
\(=x^2\left(x-3\right)-3x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-3x\right)\)
\(=x\left(x-3\right)\left(x-3\right)\)