cho A=1+5+52+53+...+52023
so sánh 4.A với 52024
1)Tìm số dư của phép chia B cho 4
B=1+3+32+33+...+3100
2)Thu gọn C=5-52+53-54+...+52023-52024
Bài 1:
$B=1+3+3^2+3^3+...+3^{100}$
$=1+(3+3^2)+(3^3+3^4)+...+(3^{99}+3^{100})$
$=1+3(1+3)+3^3(1+3)+...+3^{99}(1+3)$
$=1+(1+3)(3+3^3+...+3^{99})=1+4(3+3^3+....+3^{99})$
$\Rightarrow B$ chia 4 dư 1.
Bài 2:
$C=5-5^2+5^3-5^4+...+5^{2023}-5^{2024}$
$5C=5^2-5^3+5^4-5^5+...+5^{2024}-5^{2025}$
$\Rightarrow C+5C=5-5^{2025}$
$6C=5-5^{2025}$
$C=\frac{5-5^{2025}}{6}$
Tính tổng A=5+52+53+...+52023
A = 5 + 5² + 5³ + ... + 5²⁰²³
⇒ 5A = 5² + 5³ + 5⁴ + ... + 5²⁰²⁴
⇒ 4A = 5A - A
= (5² + 5³ + 5⁴ + ... + 5²⁰²⁴) - (5 + 5² + 5³ + ... + 5²⁰²³)
= 5²⁰²⁴ - 5
⇒ A = (5²⁰²⁴ - 5)/4
A = 5 + 5² + 5³ + ... + 5²⁰²³
⇒ 5A = 5² + 5³ + 5⁴ + ... + 5²⁰²⁴
⇒ 4A = 5A - A
= (5² + 5³ + 5⁴ + ... + 5²⁰²⁴) - (5 + 5² + 5³ + ... + 5²⁰²³)
= 5²⁰²⁴ - 5
⇒ A = (5²⁰²⁴ - 5)/4
Cho A = 1 + 5 + 52 + 53 +...+ 559
a, Chứng tỏ A ⋮ 31
b, So sánh A và B = 560 : 4
\(a,A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{57}+5^{58}+5^{59}\right)\\ A=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+...+5^{57}\left(1+5+5^2\right)\\ A=\left(1+5+5^2\right)\left(1+5^3+...+5^{57}\right)\\ A=31\left(1+5^3+...+5^{57}\right)⋮31\\ b,5A=5+5^2+5^3+...+5^{60}\\ \Rightarrow5A-A=4A=5^{60}-1\\ \Rightarrow A=\dfrac{5^{60}-1}{4}=\dfrac{5^{60}}{4}-\dfrac{1}{4}< \dfrac{5^{60}}{4}=B\)
a. A = 1 + 5 + 52 + 53 + .... + 559
A = ( 1 + 5 + 52) + (53 + 54 + 55) +.....+ (557 + 558 + 559)
A = (1 + 5 + 52) + 53(1 + 5 + 52) + ..... + 557( 1 + 5 + 52)
A = (1 + 5 + 52)( 1 + 53 +......+ 557)
A = 31(1 + 53+.....+ 557)
Vì có một thừa số 31 nên A ⋮ 31
Cho A = 1 + 5 + 52 + 53 +...+ 559
a, Chứng tỏ A ⋮ 31
b, So sánh A và B = 560 : 4
a: \(A=\left(1+5+5^2\right)+...+5^{57}\left(1+5+5^2\right)\)
\(=31\left(1+...+5^{57}\right)⋮31\)
Lời giải:
a.
$A=1+5+5^2+5^3+...+5^{59}$
$= (1+5+5^2)+(5^3+5^4+5^5)+....+(5^{57}+5^{58}+5^{59})$
$=(1+5+5^2)+5^3(1+5+5^2)+....+5^{57}(1+5+5^2)$
$=31+5^3,31+,,,,,+5^{57}.31$
$=31(1+5^3+...+5^{57})\vdots 31$ (đpcm)
b.
$A=1+5+5^2+...+5^{59}$
$5A=5+5^2+5^3+...+5^{60}$
$\Rightarrow 4A=5A-A=5^{60}-1< 5^{60}$
$\Rightarrow A< \frac{5^{60}}{4}=B$
Cho : A = { 1/52 ;1/53 ;1/54 ;1/55 ; ............ ;1/100 }
Hãy so sánh A với chữ số 1
\(A=\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}
cho s = 1/50 + 1/51 + 1/52 + 1/53 + .......... + 1/99 + 1/100 . hãy so sánh s với 5/6 cứu mình với
Cho A=1/51+1/52+1/53+1/54+......+1/99+1/100.hãy so sánh A với 1/2.
Mai mình phải nộp bài rồi.
to giup cau nhe
Vi tat ca cac phan so tren deu nho hon 1/2 ne tong do se nho hon 1/2
Neu cau cho la dung hay chon cau tra loi cua minh nhe
Ta thầy từ: 1/51 + 1/52 + 1/53 + 1/54 + .....+ 1/98 + 1/99 mỗi số hạng đều lớn hơn 1/100 Mà tổng trên có (100-51)+1= 50 (số hạng)
Nên 1/51 + 1/52 + 1/53 + 1/54 + .....+ 1/98 + 1/99 + 1/100 > 1/100 x 50 = 50/100 = 1/2 Vậy: s > 1/2
LÀM NHƯ VẦY NÈ
TỪ SỐ ĐẦU DẾN SỐ CUỐI CÓ TẤT CẢ 50 PHÂN SỐ
1/51+ 1/52 + 1/53 + 1/54 + .... + 1/99 + 1/100 - 1/100 * 50 = 50/100
RÚT GỌN PHÂN SỐ TRÊN TA CÓ 1/2 TỔNG TRÊN TRỪ ĐC 1/2 CÓ NGHĨA LÀ NÓ LỚN HƠN
CHÚC BẠN HỌC TỐT NHA NGUYỄN BẢO LINH
A= 1/51+1/52+1/53+...+1/99+1/100. so sánh với 1/2 và 1
Hãy so sánh A với B
A = 1/1 - 1/2 + 1/3 - 1/4 + ..................+ 1/99 - 1/100
B = 1/51 + 1/52 + 1/53 + ................+ 1/100
em chịu khó gõ link này lên google
https://olm.vn/hoi-dap/detail/54216861947.html