Cho 2000 số nguyên dương \(a_1\); \(a_2\); \(a_3\); \(a_4\); ...; \(a_{2000}\) thỏa mãn \(\dfrac{1}{a_1}\)+\(\dfrac{1}{a_2}\)+\(\dfrac{1}{a_3}\)+...+\(\dfrac{1}{a_{2000}}\) = 12. Chứng minh rằng ít nhất 2 số bằng nhau
cho 2000 số nguyên dương :
a1 ; a2 ; ... ; a2000
thỏa mãn : \(_{\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2000}}=12}\)
chứng minh trong 2000 số đã cho có ít nhất 2 số bằng nhau
Cho 2000 số nguyên dương a1, a2, a3,..., a2000 thỏa mãn:
\(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_{2000}}=12\)
CMR: trong 2000 số này có ít nhất 2 số bằng nhau.
Giải đầy đủ giúp mình nhs
Giả sử trong 2000 số nguyên dương đã cho không có 2 số nào bằng nhau
\(a_1>a_2>a_3>...>a_{2000}\ge1\)
Khi đó ta có :
\(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_{2000}}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}=8,1783...< 12\)
( Mâu thuẫn giả thiết )
Vậy trong 2000 số nguyên dương đã cho có ít nhất 2 số bằng nhau.
( Bài cho 6 số nguyên dương chứ không phải mình chép sai đề )
Cho 6 số nguyên dương a1 < a2 < a3 < a4 < ... < a9
Chứng minh :
\(\frac{a_1+a_2+...+a_9}{a_3+a_6+a_9}< 3< \frac{a_1+a_2+...+a_9}{a_1+a_4+a_7}\)
Ta có \(a_1< a_2< ...< a_9\)
\(\Rightarrow a_1+...+a_9< 3a_3+3a_6+3a_9\)
Khi đó: \(\frac{a_1+...+a_9}{a_3+a_6+a_9}< \frac{3\left(a_3+a_6+a_9\right)}{a_3+a_6+a_9}< 3\)(1)
Chứng minh tương tư ta có \(\Rightarrow a_1+...+a_9>3a_1+3a_4+3a_7\)
Khi đó \(\frac{a_1+...+a_9}{a_1+a_4+a_7}>\frac{3\left(a_1+a_4+a_7\right)}{a_1+a_4+a_7}>3\)(2)
Từ (1) và (2) => Điều phải chứng minh.
Chúc bạn học tốt!
Cho \(a_1,a_2,..,a_n\) là các số nguyên dương và n>1.
Đặt \(A=a_1a_2...a_n,\) \(A_i=\dfrac{A}{a_i}\left(i=\overline{1,n}\right)\). CM các đẳng thức sau:
a) \(\left(a_1,a_2,...,a_n\right)\left[A_1,A_2,...,A_n\right]=A\)
b) \(\left[a_1,a_2,..,a_n\right]\left(A_1,A_2,...,A_n\right)=A\)
a) Đặt \(d=\left(a_1,a_2,...,a_n\right)\Rightarrow\left\{{}\begin{matrix}a_1=dx_1\\a_2=dx_2\\...\\a_n=dx_n\end{matrix}\right.\) (với \(\left(x_1,x_2,...,x_n\right)=1\)).
Ta có \(A_i=\dfrac{A}{a_i}=\dfrac{d^nx_1x_2...x_n}{dx_i}=d^{n-1}\dfrac{x_1x_2...x_n}{x_i}=d^{n-1}B_i\forall i\in\overline{1,n}\).
Từ đó \(\left[A_1,A_2,...,A_n\right]=d^{n-1}\left[B_1,B_2,...,B_n\right]\).
Mặt khác do \(\left(x_1,x_2,...,x_n\right)=1\Rightarrow\left[B_1,B_2,...B_n\right]=x_1x_2...x_n\).
Vậy \(\left(a_1,a_2,...,a_n\right)\left[A_1,A_2,...,A_n\right]=d.d^{n-1}x_1x_2...x_n=d^nx_1x_2...x_n=A\).
Cho 20 số nguyên khác 0:\(a_1;a_2;a_3;...;a_{20}\)có các tính chất sau :
\(a_1\)là số dương
tổng của 3 số viết liền nhau bất kì là số dương
tổng của 20 số đó là số âm
CMR : \(a_1\cdot a_{14}+a_{14}\cdot a_{12}< a_1\cdot a_{12}\)
Cho 2016 số nguyên dương \(a_1;a_2;a_3;....;a_{2016}\) thỏa mãn:
\(\dfrac{1}{a_1}+\dfrac{1}{a_2}+\dfrac{1}{a_3}+...+\dfrac{1}{a_{2016}}=300\). Chứng minh rằng tồn tại ít nhất 2 số trong 2016 số đã cho bằng nhau
TK: Câu hỏi của Lãnh Hạ Thiên Băng - Toán lớp 6 - Học trực tuyến OLM
Cho 20 số nguyên khác 0 : \(a_1,a_2,a_3,...,a_{20}\) có các tính chất sau:
a, \(a_1\) là một số dương.
b, Tổng của ba số viết liền nhau bất kì là một số dương.
c, Tổng của 20 số đó là âm.
Chứng minh rằng : \(a_1.a_{14}+a_{14}.a_{12}< a_1.a_{12}\)
ta có
a1+(a2+a3+a4)+... +(a11+a12+a13)+a14+(a15+a16+a17)+(a18+a19+a20)<0
a1>0; a2+a3+a4>0;...;a11+a12+a13>0;a15+a16+a17>0;a18+a19+a20>0; a14<0
Ta có:
(a1+a2+a3)+...+(a10+a11+a12)+(a13+a14)+(a15+a16+a17)+(a18+a19+a20)<0
=>(a13+a14)<0
có a12+a13+a14>0=>a12>0
Từ các cmt suy ra a1>0; a12>0; a14<0
=>a1. a14+a12.a12<a1.a12(đpcm)
# HOK TỐT #
ta có
a1+(a2+a3+a4)+... +(a11+a12+a13)+a14+(a15+a16+a17)+(a18+a19+a20)<0
a1>0; a2+a3+a4>0;...;a11+a12+a13>0;a15+a16+a17>0;a18+a19+a20>0; a14<0
Ta có:
(a1+a2+a3)+...+(a10+a11+a12)+(a13+a14)+(a15+a16+a17)+(a18+a19+a20)<0
=>(a13+a14)<0
có a12+a13+a14>0=>a12>0
Từ các cmt suy ra a1>0; a12>0; a14<0
=>a1. a14+a12.a12<a1.a12
Cho \(\frac{1}{2010}\le\frac{a_i}{b_i}\le\frac{1}{2009},\text{ với }a_1,a_2,.....,a_{2000}\text{ và }b_1,b_2,......,b_{2000}\)là các số thực dương. CMR:
\(\frac{1}{2010}\le\frac{a_1+a_2+...+a_{2010}}{b_1+b_2+...+b_{2010}}\le\frac{1}{2009}\)
cho các số nguyên dương: \(a_1;a_2;a_3;...;a_{2013}\) sao cho:
\(N=a_1+a_2+a_3+...+a_{2013}\) chia hết cho 30.
chứng minh: \(M=a_1^5+a_2^5+a_3^5+...+a_{2013}^5\) chia hết cho 30.