Những câu hỏi liên quan
:vvv
Xem chi tiết
Lê Thị Thục Hiền
4 tháng 6 2021 lúc 22:51

\(\dfrac{1}{c}+b^2c=ab\left(a+b+c\right)+b^2c=ab\left(a+c\right)+b^2\left(a+c\right)=b\left(a+b\right)\left(a+c\right)\)

\(\dfrac{1}{c}+a^2c=ab\left(a+b+c\right)+a^2c=a\left(a+b\right)\left(b+c\right)\)

\(\Rightarrow\left(\dfrac{1}{c}+b^2c\right)\left(\dfrac{1}{c}+a^2c\right)=ab\left(a+b\right)^2\left(b+c\right)\left(a+c\right)\)

\(\Leftrightarrow\left(1+b^2c^2\right)\left(1+a^2c^2\right)=c^2\left(a+b\right)^2ab\left(ab+bc+ac+c^2\right)\)\(=c^2\left(a+b\right)^2\left(a^2b^2+ab^2c+a^2bc+abc^2\right)\)\(=c^2\left(a+b\right)^2\left[a^2b^2+abc\left(a+b+c\right)\right]=c^2\left(a+b\right)^2\left(a^2b^2+1\right)\)

\(\Rightarrow\dfrac{\left(1+b^2c^2\right)\left(1+a^2c^2\right)}{c^2\left(a^2b^2+1\right)}=\left(a+b\right)^2\)

\(\Leftrightarrow\sqrt{\dfrac{\left(1+b^2c^2\right)\left(1+a^2c^2\right)}{c^2+a^2b^2c^2}}=a+b\) (đpcm)

Bình luận (0)
Lê Châu Linh
Xem chi tiết
Tuyển Trần Thị
29 tháng 9 2017 lúc 20:32

ap dung bdt am gm

\(\sqrt{1+8a^3}=\sqrt{\left(1+2a\right)\left(4a^2-4a+1\right)}\)\(\le\frac{1+2a+4a^2-2a+1}{2}=\frac{4a^2+2}{2}=2a^2+1\)

\(\Rightarrow\frac{1}{\sqrt{1+8a^3}}\ge\frac{1}{2a^2+1}\)

tuongtu ta cung co \(\frac{1}{\sqrt{1+8b^3}}\ge\frac{1}{2b^2+1};\frac{1}{\sqrt{1+8c^3}}\ge\frac{1}{2c^2+1}\)

\(\Rightarrow\)VT\(\ge\frac{1}{2a^2+1}+\frac{1}{2b^2+1}+\frac{1}{2c^2+1}\)

tiep tuc ap dung bat cauchy-schwarz dang engel ta co

\(VT\ge\frac{1}{2a^2+1}+\frac{1}{2b^2+1}+\frac{1}{2c^2+1}\ge\frac{\left(1+1+1\right)^2}{2\left(a^2+b^2+c^2\right)+3}=\frac{3^2}{6+3}=1\)(dpcm)

dau = xay ra \(\Leftrightarrow a=b=c=1\)

Bình luận (0)
Nguyễn Quỳnh Chi
Xem chi tiết
Nguyên
30 tháng 7 2016 lúc 16:29

nếu cần thiết thì nhắn cho mình mình giải cho

Bình luận (0)
Nhi Nhi
Xem chi tiết
Võ Nhật Phương
24 tháng 8 2018 lúc 22:00

Vì a+b+c=0=>(a+b)=-c. Tương tự:(b+c)=-a;(a+c)=-b.

Ta có A=:\(\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}\)

\(=\frac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}+\frac{b^2}{\left(b-c\right)\left(b+c\right)-a^2}+\frac{c^2}{\left(c-a\right)\left(c+a\right)-b^2}\)

\(=\frac{a^2}{\left(a-b\right).\left(-c\right)-c^2}+tươngtự\)

\(=\frac{a^2}{-ca+bc-c^2}\)+ tương tự

\(=\frac{a^2}{c\left(b-c-a\right)}+tươngtự\)

\(=\frac{a^2}{c\left(b-\left(c+a\right)\right)}\)+ tương tự nha 

\(=\frac{a^2}{c\left(b-\left(-b\right)\right)}+tươngtự=\frac{a^2}{2bc}+tươngtự\)

Sau đó ta có :\(\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2bc}\)

=\(\frac{a^3+b^3+c^3}{2abc}=\frac{\left(a+b\right)^3-3ab\left(a+b\right)+c^3}{2abc}\)

\(=\frac{\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b\right)}{2abc}\)=\(\frac{0-0-3ab\left(-c\right)}{2abc}\)(do a+b+c=0)

=\(\frac{3abc}{2abc}=\frac{3}{2}\)Ok r bạn

Bình luận (0)
Trang Lê
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 3 2020 lúc 15:53

\(VT\ge\frac{9}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Doãn Bảo
Xem chi tiết
Kuro Kazuya
23 tháng 3 2017 lúc 21:10

\(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ca+a^2}\)

\(\Leftrightarrow a-\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}+b-\dfrac{bc\left(b+c\right)}{b^2+bc+c^2}+c-\dfrac{ca\left(c+a\right)}{c^2+ca+a^2}\)

\(\Leftrightarrow a+b+c-\left[\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}+\dfrac{bc\left(b+c\right)}{b^2+bc+c^2}+\dfrac{ca\left(c+a\right)}{c^2+ca+a^2}\right]\)

Áp dụng bất đẳng thức Cauchy - Schwarz cho 3 bộ số thực không âm

\(\Rightarrow\left\{{}\begin{matrix}a^2+ab+b^2\ge3\sqrt[3]{a^3b^3}=3ab\\b^2+bc+c^2\ge3\sqrt[3]{b^3c^3}=3bc\\c^2+ca+a^2\ge3\sqrt[3]{c^3a^3}=3ca\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}\le\dfrac{ab\left(a+b\right)}{3ab}=\dfrac{a+b}{3}\\\dfrac{bc\left(b+c\right)}{b^2+bc+c^2}\le\dfrac{bc\left(b+c\right)}{3bc}=\dfrac{b+c}{3}\\\dfrac{ca\left(c+a\right)}{c^2+ca+a^2}\le\dfrac{ca\left(c+a\right)}{3ca}=\dfrac{c+a}{3}\end{matrix}\right.\)

\(\Rightarrow\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}+\dfrac{bc\left(b+c\right)}{b^2+bc+c^2}+\dfrac{ca\left(c+a\right)}{c^2+ca+a^2}\le\dfrac{2\left(a+b+c\right)}{3}\)

\(\Leftrightarrow a+b+c-\left[\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}+\dfrac{bc\left(b+c\right)}{b^2+bc+c^2}+\dfrac{ca\left(c+a\right)}{c^2+ca+a^2}\right]\ge a+b+c-\dfrac{2\left(a+b+c\right)}{3}\)

\(\Leftrightarrow a+b+c-\left[\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}+\dfrac{bc\left(b+c\right)}{b^2+bc+c^2}+\dfrac{ca\left(c+a\right)}{c^2+ca+a^2}\right]\ge\dfrac{a+b+c}{3}\)

\(\Leftrightarrow\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ca+a^2}\ge\dfrac{a+b+c}{3}\) ( đpcm )

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (1)
Puzzy_Cô nàng bí ẩn
10 tháng 7 2016 lúc 8:39

bài này nhìn quen quen...lolang

Bình luận (0)
Nhi Nhi
Xem chi tiết
giang
Xem chi tiết
Xyz OLM
11 tháng 3 2020 lúc 13:54

ĐK : \(a;b;c\ne0\)

Ta có : \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

=> \(\frac{x^2}{a^2+b^2+c^2}+\frac{y^2}{a^2+b^2+c^2}+\frac{z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

=> \(\frac{x^2}{a^2+b^2+c^2}+\frac{y^2}{a^2+b^2+c^2}+\frac{z^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{z^2}{c^2}=0\)

=> \(x^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)+y^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)=0\)

Vì  \(a;b;c\ne0\)nên \(\hept{\begin{cases}\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\ne0\\\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\ne0\\\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\ne0\end{cases}\Rightarrow\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}\Rightarrow}x=y=z=0}\)

Khi đó : x2019 + y2019 + z2019 = 02019 + 02019 + 02019 = 0

=> x2019 + y2019 + z2019 = 0 (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
Xem chi tiết
Trần Phúc Khang
12 tháng 6 2019 lúc 11:45

BĐT

<=> \(\frac{3\left(a^2+b^2+c^2\right)+ab+bc+ac}{3\left(ac+bc+ac\right)}\ge\frac{8}{9}\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)

<=>\(3\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{a\left(a\left(b+c\right)+bc\right)}{b+c}+...\right)\)

<=> \(3\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(a^2+b^2+c^2+\frac{abc}{b+c}+\frac{abc}{a+c}+\frac{abc}{a+b}\right)\)

<=>\(\frac{1}{3}\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{abc}{b+c}+\frac{abc}{a+c}+\frac{abc}{a+b}\right)\)

Mà \(\frac{abc}{b+c}\le abc.\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{4}\left(ab+bc\right)\)

Khi đó BĐT 

<=>\(\frac{1}{3}\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{1}{2}\left(ab+bc+ac\right)\right)\)

=> \(a^2+b^2+c^2\ge ab+bc+ac\)(luôn đúng )

=> ĐPCM

Dấu bằng xảy ra khi a=b=c

Cách này chủ yếu biến đổi tương đương nên chắc phù hợp với lớp 8

Bình luận (0)
Lê Nhật Khôi
12 tháng 6 2019 lúc 12:06

Nếu sử dụng SOS nhìn vào sẽ làm đc liền vì có Nesbitt lẫn \(\frac{a^2+b^2+c^2}{ab+bc+ac}\)

Bình luận (0)
tth_new
13 tháng 6 2019 lúc 8:18

Sau đây là lời giải sử dụng SOS của em,mọi người xem thử ạ!

Bớt \(\frac{4}{3}\) ở mỗi vế,ta cần chứng minh:

\(\frac{a^2+b^2+c^2-ab-bc-ca}{ab+bc+ca}\ge\frac{8}{9}\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}-\frac{3}{2}\right)\)

\(\Leftrightarrow\Sigma_{cyc}\frac{\left(a-b\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{8}{9}.\Sigma_{cyc}\frac{\left(a-b\right)^2}{2\left(b+c\right)\left(c+a\right)}\)

\(\Leftrightarrow\Sigma_{cyc}\frac{\left(a-b\right)^2}{2}\left(\frac{1}{ab+bc+ca}-\frac{8}{9\left(b+c\right)\left(c+a\right)}\right)\ge0\)

\(\Leftrightarrow\Sigma_{cyc}\frac{\left(ab+bc+ca+9c^2\right)\left(a-b\right)^2}{18\left(ab+bc+ca\right)\left(b+c\right)\left(c+a\right)}\ge0\)

BĐT đúng do a, b, c là các số thực dương. Ta có Q.E.D

P/s: Đúng không ạ?:3

Bình luận (0)