Thực hiện các phép tính sau a)căn (2căn2-3)^2 b)căn(1/căn2-1/2)^2 c)căn(0,1-căn0,1)^2
Thực hiện các phép tính sau a)căn(căn5-căn2)^2+căn(căn5+căn2)^2 b)căn(căn2+1)^2-căn(căn2-5)^2
a) \(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)
\(=\left|\sqrt{5}-\sqrt{2}\right|+\left|\sqrt{5}+\sqrt{2}\right|\)
\(=\sqrt{5}-\sqrt{2}+\sqrt{5}+\sqrt{2}\)
\(=\sqrt{5}+\sqrt{5}\)
\(=2\sqrt{5}\)
b) \(\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(\sqrt{2}-5\right)^2}\)
\(=\left|\sqrt{2}-1\right|-\left|\sqrt{2}-5\right|\)
\(=\sqrt{2}-1-\left(5-\sqrt{2}\right)\)
\(=\sqrt{2}-1-5+\sqrt{2}\)
\(=2\sqrt{2}-6\)
trục căn thức các biểu thức sau:
a 3/4+căn(9+4căn5)
b căn3/căn2+căn(5+2căn6)
c 3/căn5+căn7-căn2
d 1/2+căn5+2căn2+căn10
x2 + 2căn2 x + 2 = 1
( căn2 - 2 ) ( căn x + 3 ) = 0
( x2 - 2 ) ( căn x - 2 ) = 0
Bài 1: Tìm điều kiện của x để các biểu thức sau có nghĩa.
a) Căn(x-2) + 1/căn(x-3)
b) Căn (x+3/x-2)
Bài 2: Thức hiện phép tính.
a) A= Căn(2- căn 5)2 - căn 5
b) B= Căn (7- 4căn3) + căn 3
c) C= Căn (5 - 2căn6) + Căn (5 + 2căn6)
d) D= (căn 2 + căn 10) / (1 + căn 5)
e) E= Căn(2 - căn 3) + Căn(2 + căn3)
trục căn thức ở mẫu và thực hiện phép tính
4/(căn 5 - căn 2) + 3/ (căn 5 -2) -2/(căn 3-2) - (căn 3 -1)/6
\(\dfrac{4}{\sqrt{5}-\sqrt{2}}+\dfrac{3}{\sqrt{5}-2}-\dfrac{2}{\sqrt{3}-2}-\dfrac{\sqrt{3}-1}{6}\)
\(=\dfrac{4\left(\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{2}+\sqrt{5}\right)}+\dfrac{3\left(\sqrt{5}+2\right)}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}-\dfrac{2\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\dfrac{\sqrt{3}-1}{6}\)
\(=\dfrac{4\left(\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{5}\right)^2-\left(\sqrt{2}\right)^2}+\dfrac{3\left(\sqrt{5}+2\right)}{\left(\sqrt{5}\right)^2-2^2}-\dfrac{2\left(\sqrt{3}+2\right)}{\left(\sqrt{3}\right)^2-2^2}-\dfrac{\sqrt{3}-1}{6}\)
\(=\dfrac{4\left(\sqrt{2}+\sqrt{5}\right)}{3}+\dfrac{3\left(\sqrt{5}+2\right)}{1}-\dfrac{2\left(\sqrt{3}+2\right)}{-1}-\dfrac{\sqrt{3}-1}{6}\)
\(=\dfrac{8\left(\sqrt{2}+\sqrt{5}\right)}{6}+\dfrac{18\left(\sqrt{5}+2\right)}{6}+\dfrac{12\left(\sqrt{3}+2\right)}{6}-\dfrac{\sqrt{3}-1}{6}\)
\(=\dfrac{8\sqrt{2}+8\sqrt{5}+18\sqrt{5}+36+12\sqrt{3}+24-\sqrt{3}+1}{6}\)
\(=\dfrac{8\sqrt{2}+26\sqrt{5}+11\sqrt{3}+61}{6}\)
\(=\dfrac{4\left(\sqrt{5}+\sqrt{2}\right)}{3}+\dfrac{3\left(\sqrt{5}+2\right)}{1}+\dfrac{2\left(2+\sqrt{3}\right)}{1}-\dfrac{\sqrt{3}-1}{6}\)
\(=\dfrac{4\sqrt{5}+4\sqrt{2}+9\sqrt{5}+18}{3}+\dfrac{4+2\sqrt{3}}{1}-\dfrac{\sqrt{3}-1}{6}\)
\(=\dfrac{2\left(13\sqrt{5}+4\sqrt{2}+18\right)+24+12\sqrt{3}-\sqrt{3}+1}{6}\)
\(=\dfrac{26\sqrt{5}+4\sqrt{2}+36+25+11\sqrt{3}}{6}\)
\(=\dfrac{61+11\sqrt{3}+26\sqrt{5}+4\sqrt{2}}{6}\)
Mình sửa lại chút nha bạn
\(=\dfrac{4\left(\sqrt{5}+\sqrt{2}\right)}{3}+\dfrac{3\left(\sqrt{5}+2\right)}{1}+\dfrac{2\left(2+\sqrt{3}\right)}{1}-\dfrac{\sqrt{3}-1}{6}\)
\(=\dfrac{4\sqrt{5}+4\sqrt{2}+9\sqrt{5}+18}{3}+\dfrac{4+2\sqrt{3}}{1}-\dfrac{\sqrt{3}-1}{6}\)
\(=\dfrac{2\left(13\sqrt{5}+4\sqrt{2}+18\right)+24+12\sqrt{3}-\sqrt{3}+1}{6}\)
\(=\dfrac{26\sqrt{5}+8\sqrt{2}+36+25+11\sqrt{3}}{6}\)
\(=\dfrac{61+11\sqrt{3}+26\sqrt{5}+8\sqrt{2}}{6}\)
Bài 1: thực hiện các phép tính sau :
a) 0,5. căn bậc 2 của 100-căn bậc 2 của 81
b) [(-20,83).0,2+(-9,17.0,2)]:[2,45.0,5-(-3,53).0,5]
Bài 2: tìm x: 1/1/3 : 0,8= 2/3:0,1x
1) So sánh các căn sau
a) 2 căn3 - 5 và căn3 -4
b) 5 căn 5 - 2 căn3 và 6+4 căn5
c) 1 - căn3 và căn2 - căn6
d) căn3 - 3 căn2 và -4 căn3 + 5 căn2
e) 3 - 2 căn3 và 2 căn6 -5
\(\sqrt{3}-\frac{5}{2}>\sqrt{3}-4\text{ vì }-\frac{5}{2}>-4\)
\(\Rightarrow2.\left(\sqrt{3}-\frac{5}{2}\right)>\sqrt{3}-4\)
\(\Rightarrow2.\sqrt{3}-5>\sqrt{3}-4\)
b) vì \(\sqrt{5}-\sqrt{12}< 0\), ta có:
\(5\sqrt{5}-2\sqrt{3}=4\sqrt{5}+\sqrt{5}-\sqrt{12}< 4\sqrt{5}< 4\sqrt{5}+6\)
Vậy \(5\sqrt{5}-2\sqrt{3}< 6+4\sqrt{5}\)
c)\(\sqrt{2}-\sqrt{6}=\sqrt{2}.\left(\sqrt{1}-\sqrt{3}\right)>\left(1-\sqrt{3}\right)\)
Vậy \(\sqrt{2}-\sqrt{6}>1-\sqrt{3}\)
\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{\sqrt{2}}{2}\Rightarrow sinA=\sqrt{1-cos^2A}=\dfrac{\sqrt{2}}{2}\)
\(\dfrac{a}{sinA}=2R\Rightarrow R=\dfrac{a}{2sinA}=\sqrt{2}\)
thực hiện phép tính
a)3 căn 2 . 5 căn 6 . 4 căn 12
b) (căn 7 - căn 2 ) ^2 + 2 căn 14
c) ( 1+ căn 5 +căn 6 ) ( 1+ căn 5 -căn 6)
a: Ta có: \(3\sqrt{2}\cdot5\sqrt{6}\cdot4\sqrt{12}\)
\(=\sqrt{18\cdot25\cdot6\cdot16\cdot12}\)
\(=\sqrt{518400}\)
=720
b: Ta có: \(\left(\sqrt{7}-\sqrt{2}\right)^2+2\sqrt{14}\)
\(=9-2\sqrt{14}+2\sqrt{14}\)
=9
c: Ta có: \(\left(1+\sqrt{5}+\sqrt{6}\right)\left(1+\sqrt{5}-\sqrt{6}\right)\)
\(=6+2\sqrt{5}-6\)
\(=2\sqrt{5}\)