Tính bán kính đường tròn ngoại tiếp của tam giác vuông cân có các cạnh góc vuông bằng a
Tính bán kính R của đường tròn ngoại tiếp tam giác vuông cân có cạnh góc vuông bằng a.
Tính bán kính đường tròn ngoại tiếp tam giác ABC trong các trường hợp sau
a. Tam giác ABC có 2 cạnh góc vuông là a và b
b. Tam giác ABC vuông cân có cạnh góc vuông bằng a
a: Bán kính là \(\dfrac{c}{2}\)
b: Bán kính là \(\dfrac{a\sqrt{2}}{2}\)
Tính bán kính đường tròn ngoại tiếp tam giác vuông cân có cạnh góc vuông bằng 3
do tam giác vuông cân nội tiếp đường tròn => đường kính = độ dài cạnh huyền của tam giác vuông cân
bình phương cạnh huyền = tổng bình phương 2 cạnh góc vuông
=> bình phương cạnh huyền = 18
=> độ dài cạnh huyền = đường kính = \(3\sqrt{2}\)
=> bán kính = \(\frac{3\sqrt{2}}{2}\)
Cho tam giác ABC vuông cân tại A, đường cao AH. Biết AB = 5cm, BC = 6cm. a/ Tính các góc và các cạnh còn lại của tam giác ABC. b/ Dựng đường tròn tâm (O) ngoại tiếp tam giác ABC, tính độ dài bán kính của đường tròn tâm O.
cho tam giác ABC vuông tại A . I là tâm đường tròn nội tiếp tam giác có IH vuông góc với BC biết BH=5; CH=12. bán kính đường tròn nội tiếp bằng 6, một cạnh góc vuông =20. tính các cạnh của tam giác ABC
cho tam giác ABC vuông tại A . I là tâm đường tròn nội tiếp tam giác có IH vuông góc với BC biết BH=5; CH=12. bán kính đường tròn nội tiếp bằng 6, một cạnh góc vuông =20. tính các cạnh của tam giác ABC
Tính các cạnh của một tam giác cân biết bán kính của đường tròn nội tiếp bằng 6cm, bán kính của đường tròn ngoại tiếp bằng 12,5cm.
Cho tam giác ABC vuông tại A biết bán kính đường tròn ngoại tiếp là 37 ; bán kính đường tròn nội tiếp là 5 . Tính các cạnh của tam giác ABC
a) Vì tam giác ABC vuông tại A nên đường tròn ngoại tiếp tam giác ABC là đường tròn đường kính BC
=> BC = 2.Rngoại tiếp = 2.37 = 74
b) Gọi I là đường tròn nội tiếp tam giác ABC => đường tròn (I) tiếp xúc với 3 cạnh của tam giác ABC
Kẻ IM; IN; IP lần lượt vuông góc với AB; AC; BC => IM = IN = IP = bán kính đường tròn nội tiếp = 5
Gọi a; b là độ dài 2 cạnh AB; AC
Ta có: AB2 + AC2 = BC2 (Định lí Pi ta go) => a2 + b2 = 5476 (*)
Ta có: SABC = AB.AC : 2 = \(\frac{ab}{2}\) (1)
Mặt khác, SABC = SIAB + SIAC + SIBC = IM.AB/2 + IN.AC/2 + IP.BC/2
= \(\frac{5a}{2}+\frac{5b}{2}+\frac{5.74}{2}=\frac{5a+5b+370}{2}\) (2)
Từ (1)(2) => ab = 5a + 5b + 370 => ab = 5(a + b) + 370 (**)
Từ (*) => (a + b)2 - 2ab = 5476 . Thay (**) vào ta được:
(a+ b)2 - 10(a + b) -740 = 5476
=> (a + b)2 - 10(a+ b) - 6216 = 0
<=> (a + b)2 - 84(a + b) + 74(a + b) - 6216 = 0
<=> (a + b - 84).(a + b + 74) = 0
<=> a + b - 84 = 0 (Vì a; b là độ dài đoạn thẳng nên a + b + 74 > 0)
=> a + b = 84. Thay vào (**) => ab = 790
=> a. (84 - a) = 790 => a2 - 84a + 790 = 0 => (a2 - 84a + 422) -974 = 0 <=> (a - 42)2 = 974 <=> a - 42 = \(\sqrt{974}\) hoặc - \(\sqrt{974}\)
=> a = 42 + \(\sqrt{974}\) hoặc a = 42 - \(\sqrt{974}\)
=> b = ...
Vậy.....
Bán kính đường tròn ngoại tiếp là 37 suy ra BC=74
Bán kính đường tròn nội tiếp là 5 suy ra \(\frac{AB+AC-BC}{2}\)=5 suy ra AB +AC = 84
suy ra AB2 +AC2 +2AB.AC= 7056 suy ra AB.AC=790
suy ra AB = 42 -\(\sqrt{974}\)
AC = 42 + \(\sqrt{974}\)
Cho tam giác ABC vuông tại A biết bán kính đường tròn ngoại tiếp là 37 ; bán kính đường tròn nội tiếp là 5 . Tính các cạnh của tam giác ABC