cho tam giác abc vuông tại a ac=12cm , góc b = 60 độ tính ab,ac
cho tam giác ABC vuông tại A có AB=9cm, AC=12cm. Kẻ đường cao AH và đường phân giác AI của tam giác ABC a) chứng minh tam giác HBA ~ tam giác ABC b) tính độ dài BC,BI c) kẻ HD vuông góc AB và HE vuông góc AC (D thuộc AB, E thuộc AC). chứng minh tam giác AED~ tam giác ABC
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay AD/AC=AE/AB
=>ΔADE\(\sim\)ΔACB
Cho tam giác ABC vuông tại A có AB =9cm AC=12cm tia phân giác góc A cắt BC tại D từ D kẻ DE vuông góc Ac E thuộc AC a, tính tỉ số BD phần DC độ dài BD và CD b,chứng minh tam giác ABC đồng dạng tam giác EDC
a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AD là phân giác
=>BD/CD=AB/AC=3/4
=>4DB=3CD
mà DB+DC=15
nên DB=45/7cm; DC=60/7cm
b: Xet ΔABC vuông tại A và ΔEDC vuông tại E có
góc C chung
=>ΔABC đồng dạng với ΔEDC
Câu 3: (3,0 điểm) Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a) Chứng minh: tam giác ABD= tam giác EBD từ đó suy ra AB = EB.
b) Cho AB = 12cm, AC = 15cm. Tính độ dài cạnh BC.
c) Cho góc B = 600. Tính góc ADE .
d) Chứng minh: DA < DC.
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó:ΔABD=ΔEBD
Suy ra: BA=BE
b: \(BC=\sqrt{12^2+15^2}=3\sqrt{41}\left(cm\right)\)
c: \(\widehat{ADE}=180^0-60^0=120^0\)
d: Ta có: DA=DE
mà DE<DC
nên DA<DC
Cho tam giác ABC cân tại A. Kẻ AM vuông góc với BC (M thuộc BC)
a) Chứng minh tam giác ABM=tam giác ACM
b) Cho biết AB=AC=13cm, AM= 12cm. Tính độ dài cạnh BC
c) Đường thằng vuông góc với AB tại B cắt đường thẳng vuông góc với AC tại C ở D. Chứng minh tam giác DBC cân
Cho tam giác ABC vuông tại A có AB = 9cm, AC = 12cm. Tia phân giác góc A cắt BC tại D. Từ D kẻ DE vuông góc với AC (E thuộc AC).
a,Tính độ dài các đoạn thẳng BD, BC, CD.
b,Chứng minh tam giác ABC đồng dạng với tam giác EDC.
c,Tính DE
d,Tính tỉ số SABD/SADC
Vẽ hình, viết giả thiết kết luận và giải giúp mik với :<
1)Cho tam giác ABC vuông tại A.Biết góc B=60 độ;BC=4.Tính AB,AC,chiều cao AH
2)Cho tam giác ABC vuông tại A.Biết AB=2;góc C=45 độ.Tính AC,BC,chiều cao AH
3)Cho tam giác ABC vuông tại A,Biết AB=3;AC=4.Tính sin C,tan B
Giải giúp mình ạ
Cho tam giác ABC có AB = AC =10 cm ; BC =12cm . Kẻ AH vuông góc BC tại H .
a) Chứng minh tam giác ABH = tam giác ACH . Từ đó suy ra H là trung điểm của đoạn thẳng BC .
b) Tính độ dài đoạn thẳng AH .
c) Kẻ HI vuông góc AB tại I ; HK vuông góc AC tại K . Vẽ các điểm D E, sao cho I, K lần lượt là trung điểm của HD HE , . Chứng minh AE = AH .
d) tam giác ADE là tam giác gì? Vì sao? Chứng minh DE / / BC .
e) Tìm điều kiện của tam giác ABC để A là trung điểm của DE .
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
Suy ra: BH=CH
b: BH=CH=6cm
=>AH=8cm
c: Xét ΔAHE có
AK là đường cao
AK là đường trung tuyến
Do đó: ΔAHE cân tại A
hay AE=AH
d: Xét ΔADH có
AI là đường cao
AI là đườngtrung tuyến
Do đó:ΔADH cân tại A
=>AD=AH=AE
=>ΔADE cân tại A
cho tam giác ABC vuông tại A , có AB = 9cm , AC = 12cm . tia phân giác của góc A cắt BC tại D . từ d kẻ DE vuông góc với AC ( E thuộc AC)
a) tính độ dài của đoạn thẳng bc , bd , cd và de
b) tính diện tích của tam giác ABD và ACD
1) Cho tam giác ABC vuông tại A có góc B = 60độ, AC = 3cm. Tính BC, AB
2) Cho tam giác ABC vuông tại A có BC = 10cm, góc C = 3cm. Tính góc B, AB, AC
3) Cho tam giác ABC vuông tại A có AB = 4cm, góc B = 50 độ. Tính BC, góc C, AC
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)