Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dmdaumoi
Xem chi tiết
Huyền
26 tháng 7 2021 lúc 14:22

Đây nhé! Tích giúp c nhaundefined

Đạt Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 8 2021 lúc 20:55

1: Ta có: \(a^2+b^2+c^2\)

\(=\left(a+b+c\right)^2-2\cdot\left(ab+bc+ca\right)\)

\(=5^2-2\cdot174=-323\)

Thư Trần
Xem chi tiết
Thái Trần Nhã Hân
21 tháng 6 2023 lúc 10:54

Ta chọn abc sao cho

a^2 b^2 +b^2 c^2=(c^2-ab)tất cả mũ 2

 => c = a + b

ta chọn c = a + b thì :

 a^2 b^2+b^2 c^2+c^2 a^2=(b^2+a^2+ab)^2

thái trần
Xem chi tiết
HT.Phong (9A5)
21 tháng 6 2023 lúc 8:19

Ta chọn a, b, c sao cho: 

\(a^2b^2+b^2c^2+c^2a^2=\left(c^2-ab\right)^2\)

\(\Leftrightarrow c=a+b\)

Khi đó ta chọn: \(c=a+b\) thì:

\(a^2b^2+b^2c^2+c^2a^2=\left(b^2+a^2+ab\right)^2\)(đpcm)

Bùi thảo ly
21 tháng 6 2023 lúc 9:50

Ta chọn abc sao cho

a^2 b^2 +b^2 c^2=(c^2-ab)tất cả mũ 2

c=a+b

ta chọn c=a+b thì 

a^2 b^2+b^2 c^2+c^2 a^2=(b^2+a^2+ab)^2

 

Lê Bảo Ngọc
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 10 2021 lúc 16:25

1, Áp dụng BĐT cosi cho a,b,c>0

\(ab+bc\ge2\sqrt{ab^2c}=2b\sqrt{ac}\\ bc+ca\ge2\sqrt{abc^2}=2c\sqrt{ab}\\ ca+ab\ge2\sqrt{a^2bc}=2a\sqrt{bc}\)

Cộng VTV 3 BĐT trên:

\(\Leftrightarrow2\left(ab+bc+ac\right)\ge2\left(b\sqrt{ac}+a\sqrt{bc}+c\sqrt{ab}\right)\\ \Leftrightarrow ab+bc+ca\ge a\sqrt{bc}+b\sqrt{ac}+c\sqrt{ab}\)

Nguyễn Hoàng Minh
10 tháng 10 2021 lúc 16:27

\(2,\)

Ta có

 \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\\ \Leftrightarrow a^2+b^2+c^2-ab-ac-bc\ge0\\ \Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

Áp dụng BĐT cm ở câu 1

Suy ra đpcm

 

minh khôi
Xem chi tiết
Phùng Minh Quân
7 tháng 7 2019 lúc 10:31

\(\frac{a-bc}{a+bc}=\frac{a-bc}{a\left(a+b+c\right)+bc}=\frac{a-bc}{a^2+ab+bc+ca}=\frac{a-bc}{\left(a+b\right)\left(c+a\right)}\)

\(=\left(a-bc\right)\sqrt{\frac{1}{\left(a+b\right)^2\left(c+a\right)^2}}\le\frac{\frac{a-bc}{\left(a+b\right)^2}+\frac{a-bc}{\left(c+a\right)^2}}{2}=\frac{a-bc}{2\left(a+b\right)^2}+\frac{a-bc}{2\left(c+a\right)^2}\)

Tương tự, ta có: \(\frac{b-ca}{b+ca}\le\frac{b-ca}{2\left(b+c\right)^2}+\frac{b-ca}{2\left(a+b\right)^2}\)\(;\)\(\frac{c-ab}{c+ab}\le\frac{c-ab}{2\left(c+a\right)^2}+\frac{c-ab}{2\left(b+c\right)^2}\)

=> \(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\le\frac{a-bc+b-ca}{2\left(a+b\right)^2}+\frac{b-ca+c-ab}{2\left(b+c\right)^2}+\frac{a-bc+c-ab}{2\left(c+a\right)^2}\)

\(\frac{\left(a+b\right)\left(1-c\right)}{2\left(a+b\right)\left(1-c\right)}+\frac{\left(b+c\right)\left(1-a\right)}{2\left(b+c\right)\left(1-a\right)}+\frac{\left(c+a\right)\left(1-b\right)}{2\left(c+a\right)\left(1-b\right)}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{3}\)

Nguyễn Viễn
Xem chi tiết
Phát Lê
Xem chi tiết
Phát Lê
Xem chi tiết