B1:tìm x bt a) 5×x×(3-2x)+5×(x-4)=6-4x
B1:chứng minh bt luôn dương
a/ x^4 + x^2 + 2
b/ (x+3)(x-11) + 2003
B2:cm bt luôn âm
a/-9x^2 + 12x - 15
b/-5-(x-1)(x+2)
B3:tìm gt nhỏ nhất của các bt sau:
a/A=11-10x-x^2
b/B=(x-2)(x-5)(x^2-7x-10)
B4:tìm x
a/(x+3)^3-x(3x+1)^2+(2x+1)(4x^2-2x+1)-3x^2=54
b/(x+3)^3-(x-3)(x^2+3x+9)+6(x+1)^2+3x^2=-33
a/x^4 lớn hơn hoặc = 0
x^2 lớn hơn hoặc = 0
2 > 0
=> x^4+x^2+2 >0 => bieu thức luôn dương
b/ (x+3)(x-11)+2003 <=> x^2 -8x -33 +2003 <=> x^2 -8x +1970 <=> x^2-8x+16+1954 <=> (x-4)^2+1954
ta có : (x-4)^2 lớn hơn hoặc = 0
1954 >0
=> (x-4)^2+1954>0 => bt luôn dương
Bài 1 trước nha . chúc bạn học tốt . Ủng hộ nha
\(=>-9\left(x^2-\frac{4}{3}x+\frac{5}{3}\right)=>-9\left(x^2-2.\frac{2}{3}x+\frac{4}{9}+\frac{11}{9}\right)=>-9\left(x-\frac{2}{3}\right)^2-11\)
Ta có \(\left(x-\frac{2}{3}\right)^2\ge0=>-9\left(x-\frac{2}{3}\right)^2\le0,-11< 0\)
\(-9\left(x-\frac{2}{3}\right)^2-11\le0\)=> bt luôn âm
\(=>-5-x^2-x+2=>-x^2-x-3=>-x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{13}{4}\)\(=>-\left(x-\frac{1}{2}\right)^2-\frac{13}{4}\)
Ta có \(\left(x-\frac{1}{2}\right)^2\ge0=>=>-\left(x-\frac{1}{2}\right)^2\le0,-\frac{13}{4}< 0\)
\(=>-\left(x-\frac{1}{2}\right)^2-\frac{13}{4}< 0\)=> bt luôn âm
ùng hộ mình nha. cảm ơn
tìm x:
a.(x-3)^4-(x+3)^4+24x^3=216
b.(2x+1)(16x^4-8x^3+4x^2-2x+1)-(2x-1)(16x^4+8x^3+4x^2+2x+1)=2
tìm GTNN của bt:
x^2+2x+4
x^2-x-5/3/4
4x^2-x-3/16
B1:tìm x bt a)7×(x-9)-5×(6-x)=-6+11x
`#040911`
`a)`
\(7.(x-9)-5.(6-x)=-6+11x\)
`<=> 7x - 63 - 30 + 5x = 11x - 6`
`<=> 7x + 5x - 11x = 63 + 30 - 6`
`<=> (7 + 5 - 11)x = 87`
`<=> x = 87`
Vậy, `x = 87.`
=>7x-63-30+5x=11x-6
=>12x-93=11x-6
=>x=-6+93=87
Tìm x , bt
a, ( 8x - 3 ) ( 3x + 2 ) - ( 4x + 7 ) ( x + 4 ) = ( 2x + 1 ) ( 5x - 1 )
b, 4( x - 1 ) ( x + 5 ) - ( x + 2 ) ( x + 5 ) = 3( x - 1 ) ( x + 2 )
a, ( 8x - 3 ) ( 3x + 2 ) - ( 4x + 7 ) ( x + 4 ) = ( 2x + 1 ) ( 5x - 1 )
( 24x2 + 16x - 9x - 6 ) - ( 4x2 - 16x - 7x + 28 ) = 10x2 - 2x + 5x -1
24x2 + 16x - 9x - 6 -4x2 - 16x - 7x - 10x2 + 2x - 5x = 6 + 28 - 1
10x2 -19x = 33
10x2 - 19x -33 = 0 \(\Leftrightarrow\)10x( x+ 3 ) + 11 ( x- 3 ) = 0
=> ( x- 3 ) ( 10x + 11 ) = 0\(\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{-11}{10}\end{cases}}\)
b, 4( x - 1 ) ( x + 5 ) - ( x + 2 ) ( x + 5 ) = 3( x - 1 ) ( x + 2 )
4( x2 - 5x - x + 5 ) - ( x2 + 5x + 2x + 10 ) = 3( x2 + 2x - x - 2 )
4x2 - 20x - 4x + 20 - x2 - 5x - 2x - 10 = 3x2 + 6x - 3x - 6
( 4x2 - x2 ) + ( -20x - 4x - 5x - 2x ) + 20 - 10 = 3x2 + ( 6x - 3x ) - 6
3x2 - 31x - 3x2 - 3x = -6-10
-34x = -16
x = \(\frac{8}{17}\)
B1:Tìm x
a) (x-7).(x+3)<0
b) (2x+6).(x-5) nhỏ hơn hoặc bằng 0.
B2:Tìm x
a) (5x+8)-(2x-15)+21=2x-5
b) 3.(x-5)-4(x+8)=-12
c) |2x+6|-(-5)^2=3
+. là dấu nhân"x" nhé!
Bài 1L
a) \(\left(x-7\right)\left(x+3\right)< 0\)
TH1:
\(\hept{\begin{cases}x-7>0\\x+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>7\\x< -3\end{cases}}}\)( loại )
TH2:
\(\hept{\begin{cases}x-7< 0\\x+3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 7\\x>-3\end{cases}\Leftrightarrow}-3< x< 7}\)( chọn )
Vậy \(-3< x< 7\)
Bài 2:
a) \(\left(5x+8\right)-\left(2x-15\right)+21=2x-5\)
\(\Leftrightarrow5x+8-2x+15+21=2x-5\)
\(\Leftrightarrow5x-2x-2x=-5-21-8-15\)
\(\Leftrightarrow x=-49\)
Vậy ...
Bài 1:
b) \(\left(2x+6\right)\left(x-5\right)\le0\)
TH1:
\(\hept{\begin{cases}2x+6\le0\\x-5\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-3\\x\ge5\end{cases}}}\)( loại )
TH2:
\(\hept{\begin{cases}2x+6\ge0\\x-5\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-3\\x\le5\end{cases}\Leftrightarrow}-3\le x\le5}\)
Vậy \(-3\le x\le5\)
B1:tìm x biết a, (-2+x^2)(x^2-2)(x^2-2)(x^2-2)(x^2-2)=1 b, (2x+3)(x-4)+(x-5)(x-2)=(3x-5)(x-4) c,(8x-3)(3x+2)-(4x+7)(x+4)=(4x+1)(5x-1) d, 2x^2+3(x-1)(x+1)=5x(x+1) e, (8-5x)(x+2)+4(x-2)(x+1)=(2+x)(2-x) f, 4(x-1)(x+5)-(x+2)(x+5)=3(x-1)(x+2)
Bạn nên viết lại đề bài cho sáng sủa, rõ ràng để người đọc dễ hiểu hơn.
f: =>4(x^2+4x-5)-x^2-7x-10=3(x^2+x-2)
=>4x^2+16x-20-x^2-7x-10-3x^2-3x+6=0
=>6x-24=0
=>x=4
e: =>8x+16-5x^2-10x+4(x^2-x-2)=4-x^2
=>-5x^2-2x+16+4x^2-4x-8=4-x^2
=>-6x+8=4
=>-6x=-4
=>x=2/3
d: =>2x^2+3x^2-3=5x^2+5x
=>5x=-3
=>x=-3/5
b: =>2x^2-8x+3x-12+x^2-7x+10=3x^2-12x-5x+20
=>-12x-2=-17x+20
=>5x=22
=>x=22/5
Chúng ta sẽ giải từng phương trình một:
a. Đặt , ta có:
bt; thực hiện phép tnhs rồi tính giá trị biểu thức
a) A=(x-2) (x^4+2x^3+4x^2+8x+16) với x+3
b) B=(x+1) (x^7-x^6+x^5-x^4+x^3+x^2-x+1) với x+2
c) C=(x+1) (x^6-x^5+x^4-x^3+x^2-x+1)
d) D= 2x(10x^2-5x-2)-5x(4x^2-2x-1) với x+ -5
Tìm GTNN của các BT sau :
A = | 2x + 8 | + 6
B = | 2y+ 4 | + 7 + | 4x + 3 |
C = x2 + 2x + 5
\(A=\left|2x+8\right|+6\ge6\Rightarrow Min_A=6\)
\(B=\left|2y+4\right|+7+\left|4x+3\right|\ge7\Rightarrow Min_B=7\)
\(C=x^2+2x+5=\left(x+1\right)^2+4\ge4\Rightarrow Min_C=4\)
a) Vì |2x+8| lớn hơn hoặc bằng 0 nên GTNN của A=6
b)Vì |2y+4|,|4x+3| lớn hơn hoặc bằng 0 nên GTNN của B=7
c)Ta có: x^2+2x+5=x.(x+2)+5
Nếu x<-2 thì x.(x+2)>0
Nếu x>2 thì x.(x+2)>0
nên GTNN của C=5
B1:Tìm gtrị nhỏ nhất của bt
A=x^2-3x+5
B=(2x-1)^2+(x+2)^2
B2:Tìm gtrị lớn nhất
A=4-x^2+2x
B=4x-x^2
Bài 1
\(A=x^2-3x+5=x^2-2.5x-2.5x+5=x\left(x-2.5\right)-2.5\left(x-2.5\right)=\left(x-2.5\right)\left(x-2.5\right)=\left(x-2.5\right)^2\)Ta có: \(\left(x-2.5\right)^2\ge0...\forall x\)
Dấu "=" xảy ra\(\Leftrightarrow\left(x-2.5\right)^2=0\Leftrightarrow x-2.5=0\Leftrightarrow x=2.5\)
Vậy giá trị nhỏ nhất của biểu thức A là 0.
\(B=\left(2x-1\right)^2+\left(x+2\right)^2=\left(4x^2-4x+1\right)+\left(x^2+4x+4\right)=5x^2+5\)
Ta có: \(5x^2\ge0..\forall x\Rightarrow5x^2+5\ge5\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow5x^2=0\Leftrightarrow x^2=0\Leftrightarrow x=0\)
Bài 1:
\(A=x^2-3x+5\)
\(=x^2-\dfrac{3}{2}x.2+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x^2-\dfrac{3}{2}x\right)-\left(\dfrac{3}{2}x-\dfrac{9}{4}\right)+\dfrac{11}{4}\)
\(=x\left(x-\dfrac{3}{2}\right)-\dfrac{3}{2}\left(x-\dfrac{3}{2}\right)+\dfrac{11}{4}\)
\(=\left(x-\dfrac{3}{2}\right)\left(x-\dfrac{3}{2}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)
Ta có: \(\left(x-\dfrac{3}{2}\right)^2\ge0\Rightarrow A=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
Dấu " = " khi \(\left(x-\dfrac{3}{2}\right)^2=0\Rightarrow x=\dfrac{3}{2}\)
Vậy \(MIN_A=\dfrac{11}{4}\) khi \(x=\dfrac{3}{2}\)
Bài 2:
a, \(A=4-x^2+2x=-x^2+2x+4\)
\(=-\left(x^2-2x-4\right)=-\left(x^2-2x+1-5\right)\)
\(=-\left[\left(x-1\right)^2-5\right]\)
\(=-\left(x-1\right)^2+5\)
Ta có: \(-\left(x-1\right)^2\le0\Rightarrow A=-\left(x-1\right)^2+5\le5\)
Dấu " = " khi \(-\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy \(MAX_A=5\) khi x = 1
b, \(B=4x-x^2=-x^2+4x\)
\(=-\left(x^2-4x+4-4\right)\)
\(=-\left[\left(x-2\right)^2-4\right]=-\left(x-2\right)^2+4\)
Ta có: \(-\left(x-2\right)^2\le0\Rightarrow B=-\left(x-2\right)^2+4\le4\)
Dấu " = " khi \(-\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy \(MAX_B=4\) khi x = 2
Bài 2:
(A=4-x^2+2x=-x^2+2x+4=-left(x^2-2x-4 ight))
(=-left(x^2-x-x+1-3 ight)=-left[left(x^2-x ight)-left(x-1 ight)-3 ight])
(=-left[x.left(x-1 ight)-left(x-1 ight)-3 ight]=-left[left(x-1 ight)^2-3 ight])
Với mọi giá trị của (xin R) ta có:
(left(x-1 ight)^2ge0Rightarrowleft(x-1 ight)^2-3ge-3Rightarrow-left[left(x-1 ight)^2-3 ight]le3)
Hay (Ale3) với mọi giá trị của (xin R).
Để (A=3) thì (-left[left(x-1 ight)^2-3 ight]=3)
(Rightarrowleft(x-1 ight)^2-3=-3Rightarrowleft(x-1 ight)^2=0)
(Rightarrow x-1=0Rightarrow x=1)
Vậy GTLN của biểu thức A là 3 đạt được khi và chỉ khi (x=1)
Chúc bạn học tốt!!!