Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lil Shroud
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 2 2021 lúc 18:43

Đặt \(N=3^n+19\)

Nếu n lẻ \(\Rightarrow n=2k+1\Rightarrow n=3.9^k+19\equiv\left(3-1\right)\left(mod4\right)\equiv2\left(mod4\right)\)

Mà các số chính phương chia 4 chỉ có thể dư 0 hoặc 1

\(\Rightarrow\)N không phải SCP

\(\Rightarrow n\) chẵn \(\Rightarrow n=2k\)

\(\Rightarrow\left(3^k\right)^2+19=m^2\)

\(\Leftrightarrow\left(m-3^k\right)\left(m+3^k\right)=19\)

Pt ước số cơ bản, bạn tự hoàn thành nhé

oksolo123
Xem chi tiết

Hôm nay olm.vn sẽ hướng dẫn các em cách giải phương trình nghiệm nguyên bằng nguyên lí kẹp. Cấu trúc đề thi hsg, thi chuyên thi violympic.

         (3n + 1)2 =  9n2 + 2n + 1 < 9n2 + 3n + 4 \(\forall\) n \(\in\) N (1)

        (3n + 2)2 =   (3n + 2).(3n +2) = 9n2 + 12n + 4

 ⇒(3n + 2)2  ≥  9n2 + 3n + 4 \(\forall\) n \(\in\) N (2)

Kết hợp (1) và (2) ta có: (3n +1)2 < 9n2 + 3n + 4 ≤ (3n + 2)2

 Vì (3n + 1)2 và (3n +2)2 là hai số chính phương liên tiếp nên 

9n2 + 3n + 4 là số chính phương khi và chỉ khi:

 9n2 + 3n + 4 = (3n + 2)2  ⇒ 9n2 + 3n + 4 = 9n2 + 12n + 4

 9n2 + 12n + 4 - 9n2 - 3n - 4 =  9n = 0 ⇒ n = 0

Vậy với n = 0 thì 9n2 + 3n + 4 là  số chính phương.

 

     

      

 

 

 

 

 

 

0o0kienlun0o0
Xem chi tiết
0o0kienlun0o0
19 tháng 2 2018 lúc 21:55

ai trả lời đc mk cho 3

có hội nha

bài tập tết của mk đó

nl mk sắp phải nộp rồi

Nguyễn Thành Công
20 tháng 2 2018 lúc 10:54

bài nào ấy nhỉ

0o0kienlun0o0
20 tháng 2 2018 lúc 13:43

c hó công

ko bt thì thui

tao tưởng mày biết

Xem chi tiết
Lê Nhật Khôi
24 tháng 3 2019 lúc 21:56

Vì \(3^n+1\)là số chính phương nên:

\(3^n+1=k^2\)

\(\Leftrightarrow3^n=\left(k+1\right)\left(k-1\right)\)

Đặt: \(\hept{\begin{cases}3^p=k+1\\3^q=k-1\end{cases}}\left(p>q\right)\)

Suy ra: \(p+q=n\)

Và \(3^p-3^q=2\)

\(\Leftrightarrow3^q\left(3^{p-q}-1\right)=1\cdot\left(3-1\right)\)

\(\hept{\begin{cases}q=0\\p=1\end{cases}\Rightarrow}n=p+q=1\)

Vậy với n=1 thì \(3^n+1\)là scp

Nguyễn Đình Vũ
Xem chi tiết
Nguyễn Anh Tuấn
Xem chi tiết
Công Nghiêm Chí
Xem chi tiết
Cấn Thị Vân Anh
27 tháng 5 2022 lúc 21:12

Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:

\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)

Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)

\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)

Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)

Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\)  => (a - 1).(a - 9) = 0

=> a = 9. Từ đó ta có n = 40

Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40

Nguyễn Mạnh Trung
Xem chi tiết
Võ Đông Anh Tuấn
6 tháng 2 2016 lúc 21:56

A)(0;0)(1;1)

B)Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

Nguyễn Văn Việt Dũng
6 tháng 2 2016 lúc 21:51

a)xy=x+y

=>xy-x-y=0

=>x(y-1)-(y-1)-1=0

=>x(y-1)-(y-1)=1

=>(y-1)(x-1)=1

=>y-1 và x-1 E Ư(1)={+-1}=>y=2 thì x=2 và y=0 thì x=0

b)Câu này khó quá nhưng ủng hộ nha

Nguyễn Việt Bách
Xem chi tiết
Akai Haruma
10 tháng 9 2023 lúc 0:01