Tìm GTLN `-4x^2+4x-3`
Bài 4:
a, Tìm GTLN
\(Q=-x^2-y^2+4x-4y+2\)
b, Tìm GTLN
\(A=-x^2-6x+5\)
\(B=-4x^2-9y^2-4x+6y+3\)
c, TÌm GTNN
\(P=x^2+y^2-2x+6y+12\)
a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)
\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)
\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)
Vậy MaxQ=10 khi x=2, y=-2
b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)
\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)
Vậy MaxA=14 khi x=-3
+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)
Vậy MaxB=5 khi x=-1/2, y=1/3
c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Vậy MinP=2 khi x=1, y=-3
y= -x^2 + 4x + \(\sqrt{x^2-4x+3}\) tìm gtln,nn
Tìm GTNN A=(x-1).(x-3)+11
Tìm GTLN B=5-4x^2+4x
a, (x-1)(x-3)+11
=x2-3x-x+3+11
=(x-2)2+10
Vì..................................
b,5-4x2+4x
=-(4x2-4x+4)+9
=-(2x-2)2+9
...........................................................
Tìm GTLN của : \(\frac{3}{4x^2-4x+5}\)
\(A=\frac{3}{4x^2-4x+5}\)
\(=\frac{3}{4x^2-4x+1+4}\)
\(=\frac{3}{\left(2x-1\right)^2+4}\)
\(\left(2x-1\right)^2\ge0\)
\(\Rightarrow\left(2x-1\right)^2+4\ge4\)
\(\Rightarrow\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\)
\(MaxA=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
Đặt \(A=\frac{3}{4x^2-4x+5}\)
Biến đổi : \(4x^2-4x+5\)
\(=\left[\left(2x\right)^2-2.2x.1+1^2\right]+4\)
\(=\left(2x-1\right)^2+4\)
Ta có : \(\left(2x-1\right)^2\ge0\)
\(\Rightarrow\left(2x-1\right)^2+4\ge4\)
\(\Rightarrow\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\)
\(\Rightarrow A\le\frac{3}{4}\)
Dấu " = " xảy ra khi và chỉ khi \(2x-1=0\)
\(2x=1\)
\(x=\frac{1}{2}\)
Vậy \(Max_A=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
tìm gtln A=-(X-3)^2-7
b=-x^3-2x-5
C=-4x^2-4x+9
D=-3y^2-6y+1
hứa vote 5 sao
a, Ta có: \(-\left(x-3\right)^2\le0,\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2-7\le-7\)
Vậy max A là \(-7\Leftrightarrow x=3\)
b, Ta có \(B=-x^2-2x-5=-\left(x+1\right)^2-4\le4\)
Dấu \("="\Leftrightarrow x=-1\)
c, Ta có \(C=-4x^2-4x+9=-\left(2x+1\right)^2+10\le10\)
Dấu \("="\Leftrightarrow x=-\dfrac{1}{2}\)
d, Ta có:\(D=-3y^2-6y+1\\ =-3\left(y^2+2y-\dfrac{1}{3}\right)=-3\left[\left(y+1\right)^2-\dfrac{4}{3}\right]=-3\left(y+1\right)^2+4\le4\)
Dấu \("="\Leftrightarrow y=-1\)
tìm GTLN :4x+1 -|4x-3|
TÌm GTLN của:
N(x)=1-x^4-4x^3-4x^2
Tìm GTLN của M = \(\frac{3}{4x^2-4x+5}\)
Ta có :
\(M=\frac{3}{4x^2-4x+5}=\frac{3}{\left(2x-1\right)^2+4}\)
Ta thấy \(\left(2x-1\right)^2\ge0\)
\(\Rightarrow\left(2x-1\right)^2+4\ge4\)
Do đó \(\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\)
( So sánh 2 phân thức cùng tử , tử và mẫu đều dương )
Vậy \(MaxM=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
P/s : Tự làm lại đầy đủ nhé . Mình có bớt 1 số chỗ không cần thiết lắm .
Tìm GTNN của phân thức: \(\dfrac{3+\left|2x-1\right|}{14}\)
Tìm GTLN của phân thức: \(\dfrac{-4x^2+4x}{15}\)
\(\left|2x-1\right|+3\ge3\Leftrightarrow\dfrac{3+\left|2x-1\right|}{14}\ge\dfrac{3}{14}\)
Dấu \("="\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)
\(\dfrac{-4x^2+4x}{15}=\dfrac{-4x^2+4x-1+1}{15}=\dfrac{-\left(2x-1\right)^2+1}{15}\)
Ta có \(-\left(2x-1\right)^2+1\le1\Leftrightarrow\dfrac{-\left(2x-1\right)^2+1}{15}\le\dfrac{1}{15}\)
Dấu \("="\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)