cho tam giac abc nhon noi tiep(o;r)ab<bc cac duong cao bd ce
cm goc ebd= goc ecd
cm tu giac bedc noi tiep
Cho tam giac nhon ABC noi tiep duong tron O;13) va H la truc tam cua tam giac ABC. Nếu BC = 24 cm thì AH =...... cm
AH=10(cm) . Mik có giải trong chtt roy
Cho tam giac ABC nhon , 3 duong cao AD,BE,CF cat nhau tai H. J va K lan luot la tam noi tiep tam giac BFD va tam giac CED . CMR tu giac BJKC noi tiep
Hướng dẫn:
Ta chứng minh: ^CBJ + ^JKC = 180o
Có: ^CBJ + ^JKC = \(\frac{1}{2}\).^CBA + ^JKD + ^DKC = (a)
+) \(\Delta\)BFD ~ \(\Delta\)ECD (1) => \(\Delta\)JFD ~ \(\Delta\)KDC => \(\Delta\)DKJ ~ \(\Delta\)DCF (2)
Từ (2) => ^JKD = ^FCD
K là giao điểm 3 đường phân giác của \(\Delta\)DEC => DKC = 90o + ^DEC:2
(a) = \(\frac{\widehat{CBA}}{2}+\widehat{FCB}+90^o+\frac{\widehat{DEC}}{2}\)
(1) => ^DEC = ^DBF = ^CBA
(a) = \(\frac{\widehat{CBA}}{2}+\widehat{FCB}+90^o+\frac{\widehat{CBA}}{2}\)
= \(\widehat{CBA}+\widehat{FCB}+90^o=180^o\)
=> BJKC nội tiếp
cho tam giac ABC co ba goc nhon noi tiep trong duong tron (O;R). Cac duong cao BE, CF (E thuoc AC, F thuoc AB).
Cmr : a, Tu giac BCEF noi tiep.
b, EF vuong goc OA
a/ Câu này dễ rồi bạn tự làm
b/ Kẻ thêm tiếp tuyến Ax với (O)
Vì tứ giác BCEF nội tiếp (cmt) => góc BCA = góc AFE (góc trong = góc đối ngoài)
Mà: góc BCA = góc xAB (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AB)
=> góc AFE = góc xAB
Mà 2 góc này ở vị trí so le trong
=> EF // Ax
Mà: Ax vuông góc OA (gt) => EF vuông góc OA (đpcm)
cho tam giac ABC co 3 goc nhon cac duong cao AD BE CF cua tam giac ABC cat nhau tai H
a) CM: tu giac CFHD noi tiep trong 1 duong tron xac dinh vi tri tam O cua duong tron ngoai tiep tu giac CEHD
b) CM: goc FEH bang goc DEH . CM: H la tam duong tron noi tiep tam giac DEF
c) CM; CH = 4cm tinh do dai duong tron tam (o) va duong kinh hinh tron (o)
cho tam giac ABC co 3 goc nhon AB<AC noi tiep duong tron tam O. cac duong cao BE, CF cua tam giac ABC cat nhau tai H
a) chung minh tu giac AFHE noi tiep duoc trong mot duong tron. xac dinh tam va ban kinh cua duong tron do
b) goi M la giao diem cua EF va BC, duong thang MA cat (O) tai diem 1 thu 2 la I khac A. chung minh tu giac AEFI noi tiep 1 duong tron
m.n oi giup mk voi aj
cho tam giac ABC nhon noi tiep dtron (o;R) .cac duong cao AD,BE,CFcat nhau tai H.chung minh
OAvuong goc voi EF
Kẻ AM là tiếp tuyến tại A của (O)
Xét ΔAEB vuông tại Evà ΔAFC vuông tại F có
góc EAB chung
Do đó: ΔAEB đồng dạng với ΔAFC
Suy ra: AE/AF=AB/AC
hay AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
Do đo: ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ABC
=>góc AEF=góc EAM
=>AM//EF
=>OA\(\perp\)FE
cho tam giac ABC nhon noi tiep duong tron tam O . AD , CE la hai duong cao , H la truc tam cua tam giac ABC . M la diem doi xung voi B qua O , i la giao diem cua BM va DE , K la giao diem cua AC va HM. chung minh rang:
a, tu giac AEDC , CMID noi tiep
b BI.BM = BE.BA
c, OK vuong goc voi AC
cho tam giac nhon ABC noi tiep duong tron (O) co duong kinh AH ,tia phan giac AD cat (O) tai E.ke duong kinh EF ,Goi I la tam duong tron noi tiep tam giac ABC.cm:
a,tam giac HAB dong dang tam giac CAF
b,EB=EI=EC
c,goi M,N,P lan luot la chan duong cao ke tu E den AB,BC,AC.cm M,N,P thang hang
1/cho tam giac ABC can tai A ( goc A<900) cac duong cao AD va BE cat nhau tai H ( D thuoc BC, E thuoc AC)
a/CM tu giac DHEC noi tiep duong tron
b/chung minh ED=BD va goc HBD=goc HCD
c/Goi O la tam cua duong tron ngoai tiep tam giac AHE.CM rang ED la tiep tuyen cua duong tron (O)
2/cho ram giac ABC co ba goc nhon noi tiep duong tron (O).Hai duong cao AD va BJ cat nhau tai H
a/CM;tu giac CDHK noi tiep
b/ve d.kinh AF .tia AD cat (O)tai E.CM BC//EF
c/CMR; AD/HD=BD.CD
b/goi I la trung diem cua BC .CMR: H,I,F thang hang
3/cho tam giac nhon ABC noi tiep duong tron tam O,duong cao BHva CK lan luot cat duong tron tai Eva F
a.CMR: tu giac BKHC noi tiep
b.CM: A la diem chinh giua cu cung EF
c.CM:OA//EF
d.CM:EF//HK
4/cho tam giac ABC vuong tai A co AB<AC.Ke duong cao AH.Tren HC lay diem D sao cho HD=Hb
a/CMR:tap giac ABD can
b/Tu C ke CF vuong goc voi AD keo dai tai E
Chung minh tu giac AHEC noi tiep duoc trong 1 duong tron .Xac dinh tam O cua duong tron nay
c/CM:AB.ED=HB.CD