cho đa thưc f(x)=ax^2+bx+c
bt:f(0)=2020 f(1)=2021 t(-1)=2019
tính t(2022)
cho f(x)=ax^2+bx+c . biết f(0) = 2020 , f(-1) = 2019 , f(1) = 2021 . tính f(2022)
Link bài làm của mình đây nhé
https://olm.vn/hoi-dap/detail/831153598726.html
Ta có : \(f\left(0\right)=c=2020\)
\(f\left(-1\right)=a-b+c=2021\)
\(f\left(1\right)=a+b+c=2021\)
Ta có hệ sau : \(\hept{\begin{cases}c=2020\\a-b=-1\\a+b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}-2b=-2\\a+b=1\end{cases}\Leftrightarrow\hept{\begin{cases}b=1\\a=0\end{cases}}}\)
Vậy \(f\left(2020\right)=0.2020^2+2022+2020=4042\)
cho đa thức f(x)=ax^2+bx+c có giá trị bằng 0 với mọi x tính P=2021^a+2022^b+2023^c
cho đa thức F(x)=x3+ax2+bx+c (a,b,c\(\inℝ\)), biết F(x) chia x-1 dư -4 , F(x) chia x+2 dư 5.
tính A=(a2019+b2019)(b2020-c2020)(a2021+c2021)
Cho đa thức \(f\left(x\right)=ax^2+bx+c\) \(\left(a\ne0\right)\). Tìm a, b, c biết \(f\left(x\right)-2020\)chia hết cho x - 1, \(f\left(x\right)+2021\) chia hết cho x + 1 và \(f\left(x\right)\) nhận giá trị bằng 2 khi x = 0
Mình có nghĩ ra cách này mọi người xem giúp mình với
f(x) = \(ax^2+bx+c\)
Ta có f(0) = 2 => c = 2
Ta đặt Q(x) = \(ax^2+bx+c-2020\)
và G(x) = \(ax^2+bx+c+2021\)
f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư
\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)
Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0
hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)
G(x) chia cho x + 1 số dư
\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)
Mà G(x) chia hết cho x + 1 nên \(R_2\)=0
hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)
Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)
\(f\left(0\right)=2\Rightarrow c=2\)
\(f\left(x\right)-2020\) chia hết \(x-1\Rightarrow f\left(1\right)-2020=0\)
\(\Rightarrow a+b+c-2020=0\Rightarrow a+b-2018=0\)
\(f\left(x\right)+2021\) chia hết \(x+1\Rightarrow f\left(-1\right)+2021=0\)
\(\Rightarrow a-b+c+2021=0\Rightarrow a-b+2023=0\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)
Cho đa thức \(f\left(x\right)=ax^2+bx+2020\) có các hệ số a,b là các số hữu tỉ và \(f\left(\sqrt{3}-1\right)=2021\). Tìm a,b và tính \(f\left(1+\sqrt{3}\right)\)
\(f\left(x\right)=ax^2+bx+2020\\ \Leftrightarrow f\left(\sqrt{3}-1\right)=a\left(4-2\sqrt{3}\right)+b\left(\sqrt{3}-1\right)+2020=2021\\ \Leftrightarrow4a-2a\sqrt{3}+b\sqrt{3}-b-1=0\\ \Leftrightarrow\left(4a-b-1\right)-\sqrt{3}\left(2a-b\right)=0\\ \Leftrightarrow4a-b-1=\sqrt{3}\left(2a-b\right)\)
Vì a,b hữu tỉ nên \(4a-b-1;2a-b\) hữu tỉ
Mà \(\sqrt{3}\) vô tỉ nên \(\sqrt{3}\left(2a-b\right)\) hữu tỉ khi \(2a-b=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a-b-1=0\\2a-b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\)
\(\Leftrightarrow f\left(1+\sqrt{3}\right)=\dfrac{1}{2}\left(4+2\sqrt{3}\right)+1+\sqrt{3}+2020=2023+2\sqrt{3}\)
cho đa thức f(x)=ax5+bx3+bx2+a, biết f(2021)=2021. Hãy tính f (1/2021)
cho đa thức F(x)=x3+ax2+bx+c (a,b,c\(\inℝ\)), biết F(x) chia x-1 dư -4 , F(x) chia x+2 dư 5.
tính A=(a2019+b2019)(b2020-c2020)(a2021+c2021)
Theo đề bài ta có :
\(F\left(x\right)=\left(x-1\right)\cdot Q\left(x\right)-4\) (1)
\(F\left(x\right)=\left(x+2\right)\cdot R\left(x\right)+5\) (2)
Thay \(x=1\) vào (1) ta có :
\(F\left(1\right)=-4\)
\(\Leftrightarrow1+a+b+c=-4\)
\(\Leftrightarrow a+b+c=-5\)
Thay \(x=-2\) vào (2) ta có :
\(F\left(-2\right)=5\)
\(\Leftrightarrow-8+4a-2b+c=5\)
\(\Leftrightarrow4a-2b+c=13\)
Do đó ta có : \(\hept{\begin{cases}a+b+c=-4\\4a-2b+c=13\end{cases}}\)
....
cho đa thưc bậc 4: F(x)=ax4+bx3+cx2+dx+e. biết F(1)+F(-1)và F(2)=F(-2). chứng minh F(x)=F(-x)
cho đa thức f(x)=ax^2+bx+c .Biết f(0)=2017 ;f(1)=2018 ;f(-1)=2019 .Tính f(2)
\(\left\{{}\begin{matrix}f\left(0\right)=2017\\f\left(1\right)=2018\\f\left(-1\right)=2019\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}c=2017\\a+b+c=2018\\a-b+c=2019\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=1\\a-b=2\\c=2017\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{3}{2}\\b=-\frac{1}{2}\\c=2017\end{matrix}\right.\)
\(\Rightarrow f\left(2\right)=\frac{3}{2}\cdot2^2-\frac{1}{2}\cdot2+2017\)
\(\Rightarrow f\left(2\right)=6-1+2017=2022\)