chứng minh đẳn thức : (x^2+y^2)^2 -(2xy)^2=(x+y)^2 (x+-y)2
chứng minh đẳng thức
[(3/x-y+3x/x^2-y^2)]: 2x+y/x^2+2xy+y^2]x-y/3=x+y
chứng minh đẳng thức x^2+y^2=(x+y)^2-2xy
Ta có
x2 + y2
= (x2 + 2xy + y2) - 2xy
= (x + y)2 - 2xy (đpcm)
Chúc bạn học tốt!!!@@@
Cho x, y, z khác 0 và \(\dfrac{y^2+z^2-x^2}{2yz}+\dfrac{z^2+x^2-y^2}{2xz}+\dfrac{x^2+y^2-z^2}{2xy}=1\). Chứng minh: Trong 3 phân thức trên có 1 phân thức bằng -1 và 2 phân thức còn lại bằng 1
Cho x, y, z khác 0 và \(\dfrac{y^2+z^2-x^2}{2yz}+\dfrac{z^2+x^2-y^2}{2xz}+\dfrac{x^2+y^2-z^2}{2xy}=1\). Chứng minh: Trong 3 phân thức trên có 1 phân thức bằng -1 và 2 phân thức còn lại bằng 1
Chứng minh (x+y)(x+y)=x^2+2xy+y^2 b(x-y)(x-y)=x^2-2xy+y^2 c(x-z)(x+z)=x^2-z^2
\(\left(x+y\right)\left(x+y\right)=x^2+xy+xy+y^2=x^2+2xy+y^2\)
\(\left(x-y\right)\left(x-y\right)=x^2-xy-xy+y^2=x^2-2xy+y^2\)
\(\left(x-z\right)\left(x+z\right)=x^2+xz-xz-z^2=x^2-z^2\)
1. Chứng minh |x-y|<|1-xy| với |x|<1,|y|<1
2. a) Tìm GTNN của biểu thức A=x^2-2x+1975/x^2
b) Cho x,y>0, x+y=1. Chứng minh: 2(x^4+y^4)+1/2xy>=2.1/4
Chứng minh biểu thức sau không phụ thuộc vào x :
(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2xz
chứng minh đẳng thức sau:
x^2y+2xy^2+y^3/ 2x^2+ xy- y^2= xy+ y^2/ 2x- y
Chứng minh hằng đẳng thức:
x2+y2=(x+y)2-2xy
Biến đổi vế phải:
VP= (x+y)2 -2xy = x2+2xy+y2-2xy=x2+y2=VT
=> đpcm
=.= hok tốt!!
Ta có:
\(x^2+y^2\)
\(=x^2+2xy+y^2-2xy\)
\(=\left(x+y\right)^2-2xy\)
Hok tốt nhé