Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tố Quyên
Xem chi tiết
HT.Phong (9A5)
6 tháng 11 2023 lúc 17:40

a) \(4x^3-36x=0\)

\(\Leftrightarrow4x\left(x^2-9\right)=0\)

\(\Leftrightarrow4x\left(x+3\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=0\\x+3=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=3\end{matrix}\right.\)

b) \(\left(x-2\right)^2-4x+8=0\)

\(\Leftrightarrow\left(x-2\right)^2-\left(4x-8\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-2-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

c) \(x^3+\left(x+3\right)\left(x-9\right)=-27\)

\(\Leftrightarrow\left(x^3+27\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)

Vũ Thị Thu Hà
Xem chi tiết
Vũ Thị Thu Hà
9 tháng 1 2016 lúc 22:51

CẦN GẤP M.N ƠI

 

ngo quy duong
10 tháng 1 2016 lúc 7:19

haaaaaaaaaaaaaa

 

nguyễn  xuân ly
Xem chi tiết
Nguyễn Nho Bảo Trí
13 tháng 7 2021 lúc 21:13

a) x(x - 5) - 4x + 20 = 0

\(\Leftrightarrow\) x(x - 5) - (4x + 20)

\(\Leftrightarrow\) x(x - 5) - 4(x - 5) = 0

\(\Leftrightarrow\) (x - 5)(x - 4)

Khi x - 5 = 0 hoặc x - 4 = 0

 \(\Leftrightarrow\) x = 5           \(\Leftrightarrow\) x = 4

 Vậy S = \(\left\{5;4\right\}\)

b) x(x + 6) - 7x - 42 = 0

 \(\Leftrightarrow\) x(x + 6) - (7x - 42) = 0

 \(\Leftrightarrow\) x(x + 6) - 7(x + 6) = 0

 \(\Leftrightarrow\) (x + 6)(x - 7) = 0

Khi x - 6 = 0 hoặc x - 7 = 0

   \(\Leftrightarrow\) x = 6           \(\Leftrightarrow\) x = 7

 Vậy S = \(\left\{6;7\right\}\)

c) x3 - 5x2 - x + 5 = 0

 \(\Leftrightarrow\) (x3 - 5x2) - (x + 5) = 0

 \(\Leftrightarrow\) x2 (x - 5) - (x - 5) = 0

 \(\Leftrightarrow\) (x - 5)(x2 - 1) = 0

 \(\Leftrightarrow\) (x - 5)(x - 1)(x + 1) = 0

 Khi x - 5 = 0 hoặc x - 1 = 0 hoặc x + 1 = 0

   \(\Leftrightarrow\) x = 5           \(\Leftrightarrow\) x = 1            \(\Leftrightarrow\) x = -1

 Vậy S = \(\left\{5;1;-1\right\}\)

d) 4x2 - 25 - (2x - 5)(3x + 7) = 0

\(\Leftrightarrow\) (2x)2 - 52 - (2x - 5)(3x + 7) = 0

\(\Leftrightarrow\) (2x - 5)(2x + 5) - (2x - 5)(3x + 7) = 0

\(\Leftrightarrow\) (2x - 5) \([\left(2x+5\right)-\left(3x+7\right)]\) = 0

\(\Leftrightarrow\) (2x - 5) ( 2x + 5 - 3x + 7) = 0

\(\Leftrightarrow\) (2x - 5)( -x + 12) = 0

Khi 2x - 5 = 0 hoặc -x + 12 = 0

  \(\Leftrightarrow\) 2x = 5             \(\Leftrightarrow\)   -x = -12

  \(\Leftrightarrow\) x = \(\dfrac{5}{2}\)              \(\Leftrightarrow\) x = 12

 Vậy S = \(\left\{\dfrac{5}{2};12\right\}\)

e) x3 + 27 + (x + 3)(x - 9) = 0

\(\Leftrightarrow\) x3 - 33 + (x + 3)(x - 9) = 0

\(\Leftrightarrow\) (x - 3)(x2 - 3x + 9) + (x + 3)(x - 9) = 0

\(\Leftrightarrow\) (x - 3) \(\left[\left(x^2-3x+9\right)+\left(x-9\right)\right]\) = 0

\(\Leftrightarrow\) (x - 3) ( x2 - 3x + 9 + x - 9) = 0

\(\Leftrightarrow\) (x - 3)(x2 - 2x) = 0

\(\Leftrightarrow\) (x - 3)x(x - 2)

 Khi x - 3 = 0 hoặc x = 0 hoặc x - 2 = 0

    \(\Leftrightarrow\) x = 3                            \(\Leftrightarrow\) x = 2

 Vậy S = \(\left\{3;0;2\right\}\)

 Chúc bạn học tốt

Nguyễn Lê Phước Thịnh
13 tháng 7 2021 lúc 23:06

a) Ta có: \(x\left(x-5\right)-4x+20=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)

b) Ta có: \(x\left(x+6\right)-7x-42=0\)

\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
13 tháng 7 2021 lúc 23:08

c) Ta có: \(x^3-5x^2-x+5=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\\x=-1\end{matrix}\right.\)

d) Ta có: \(4x^2-25-\left(2x-5\right)\left(3x+7\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x+5-3x-7\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-2\end{matrix}\right.\)

Lấp La Lấp Lánh
30 tháng 9 2021 lúc 17:30

\(\left(\dfrac{4}{9}\right)^{x+1}=\left(\dfrac{8}{27}\right)^6\)

\(\Leftrightarrow\left(\dfrac{2}{3}\right)^{2x+2}=\left(\dfrac{2}{3}\right)^{18}\)

\(\Leftrightarrow2x+2=18\Leftrightarrow2x=16\Leftrightarrow x=8\)

 

momomina
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 7 2020 lúc 9:15

1: Ta có: \(x^{10}-4x^8+4x^6\)

\(=x^6\left(x^4-4x^2+4\right)\)

\(=x^6\left(x-2\right)^2\left(x+2\right)^2\)

2: Ta có: \(m^3+27\)

\(=\left(m+3\right)\left(m^2-3m+9\right)\)

3: Ta có: \(x^3+8\)

\(=\left(x+2\right)\left(x^2-2x+4\right)\)

4: Ta có: \(\frac{1}{27}+a^3\)

\(=\left(\frac{1}{3}+a\right)\left(\frac{1}{9}-\frac{a}{3}+a^2\right)\)

5: Ta có: \(8x^3+27y^3\)

\(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)

6: Ta có: \(\frac{1}{8}x^3+8y^3\)

\(=\left(\frac{1}{2}x+2y\right)\left(\frac{1}{4}x^2-xy+4y^2\right)\)

7: Ta có: \(8x^6-27y^3\)

\(=\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)

8: Ta có: \(\frac{1}{8}x^3-8\)

\(=\left(\frac{1}{2}x-2\right)\left(\frac{1}{4}x^2+x+4\right)\)

9: Ta có: \(\frac{1}{64}x^6-125y^3\)

\(=\left(\frac{1}{4}x^2-5y\right)\left(\frac{1}{16}x^4+\frac{5}{4}x^2y+25y^2\right)\)

10: Ta có: \(\left(a+b\right)^3-c^3\)

\(=\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)\cdot c+c^2\right]\)

\(=\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc+c^2\right)\)

11: Ta có: \(x^3-\left(y-1\right)^3\)

\(=\left[x-\left(y-1\right)\right]\cdot\left[x^2+x\left(y-1\right)+\left(y-1\right)^2\right]\)

\(=\left(x-y+1\right)\left(x^2+xy-x+y^2-2y+1\right)\)

12: Ta có: \(x^6+1\)

\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)

Trúc Giang
30 tháng 7 2020 lúc 9:29

1) \(x^{10}-4x^8+4x^6\)

\(=x^6\left(x^4-4x^2+4\right)\)

2) \(m^3+27=m^3+3^3=\left(m+3\right)\left(m^2-3m+3^2\right)\)

3) \(x^3+8=x^3+2^3=\left(x+2\right)\left(x^2-2x+2^2\right)\)

4) \(\frac{1}{27}+a^3=\left(\frac{1}{3}\right)^3+a^3=\left(\frac{1}{3}+a\right)\left[\left(\frac{1}{3}\right)^2-\frac{1}{3}a+a^2\right]\)

5) \(8x^3+27y^3=\left(2x\right)^3+\left(3y\right)^3=\left(2x+3y\right)\left[\left(2x\right)^2-2x.3y+\left(3y\right)^2\right]=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)

6) \(\frac{1}{8}x^3+8y^3=\left(\frac{1}{2}x\right)^3+\left(2y\right)^3=\left(\frac{1}{2}x+2y\right)\left[\left(\frac{1}{2}x\right)^2-\frac{1}{2}x.2y+\left(2y\right)^2\right]=\left(\frac{1}{2}x+2y\right)\left(\frac{1}{4}x^2-xy+4y^2\right)\)

8) \(\frac{1}{8}x^3-8=\left(\frac{1}{2}x\right)^3-2^3=\left(\frac{1}{2}x-2\right)\left[\left(\frac{1}{2}x\right)^2+\frac{1}{2}x.2+2^2\right]=\left(\frac{1}{2}x-2\right)\left(\frac{1}{4}x^2+x+4\right)\)

10) \(\left(a+b\right)^3-c^3=\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]=\left(a+b-c\right)\left[\left(a^2+2ab+b^2\right)+ac+bc+c^2\right]=\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc+c^2\right)\)11) \(x^3-\left(y-1\right)^3=\left(x-y+1\right)\left[x^2+x\left(y-1\right)+\left(y-1\right)^2\right]=\left(x-y+1\right)\left[x^2+xy-x+\left(y^2-2y+1\right)\right]=\left(x-y+1\right)\left(x^2+xy-x+y^2-2y+1\right)\)

P/s: Đăng ít thôi chớ bạn!

Tran duchuy
Xem chi tiết
Dragon ball heroes Music
Xem chi tiết
Dragon ball heroes Music
18 tháng 9 2021 lúc 15:01

Mn giúp e với ak

Minh Hiếu
18 tháng 9 2021 lúc 15:06

a) \(\sqrt{x^2-6x+9}\)

\(=\sqrt{\left(x^2-2.x.3+3^2\right)}\)

\(=\sqrt{\left(x-3\right)^2}\) ≥0,∀x

⇒x∈\(R\)

b) \(\sqrt{x^2-2x+1}\)

\(=\sqrt{\left(x^2-2.x.1+1^2\right)}\)

\(=\sqrt{\left(x-1\right)^2}\) ≥0,∀x

⇒x∈\(R\)

Hòa Minh Anh
Xem chi tiết
Nguyễnvănsơn
13 tháng 1 2016 lúc 12:52

4x-2x+x-27:9=33 

2x+x-27:9=33

3x-27:9=33

3x-27=33×9=297

3x=297+27=324

x=324÷3=108