Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Tuấn Mạnh
Xem chi tiết
Đỗ khôi Nguyên
Xem chi tiết
Lấp La Lấp Lánh
11 tháng 9 2021 lúc 11:12

\(\dfrac{1}{2014}-\dfrac{1}{2014.2013}-\dfrac{1}{2013.2012}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}=\dfrac{1}{2014}-\left(\dfrac{1}{2013.2014}+\dfrac{1}{2012.2013}+...+\dfrac{1}{2.3}+\dfrac{1}{1.2}\right)=\dfrac{1}{2014}-\left(\dfrac{1}{2013}-\dfrac{1}{2014}+\dfrac{1}{2012}-\dfrac{1}{2013}+...+\dfrac{1}{2}-\dfrac{1}{3}+1-\dfrac{1}{2}\right)=\dfrac{1}{2014}-\left(1-\dfrac{1}{2014}\right)=\dfrac{1}{2014}-\dfrac{2013}{2014}=-\dfrac{1006}{1007}\)

Dương Su Thùy
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 7 2023 lúc 11:24

=1/2014-(1/1*2+1/2*3+...+1/2013*2014)

=1/2014-(1-1/2+1/2-1/3+...+1/2013-1/2014)

=1/2014-1+1/2014

=1/1007-1=-1006/1007

luu hue man
Xem chi tiết
tuyên lương
17 tháng 6 2016 lúc 16:25

=\(-\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2015}+\frac{1}{2014}-...-\frac{1}{2}+1\)

=\(-\frac{1}{2016}+1=\frac{2015}{2016}\)

Cao Chi Hieu
17 tháng 6 2016 lúc 16:47

Ta có :\(\frac{-1}{2016.2015}-\frac{1}{2015.2014}-\frac{1}{2014.2013}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

       = \(-\left(\frac{1}{2016.2015}+\frac{1}{2015.2014}+\frac{1}{2014.2013}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

       = \(-\left(\frac{1}{2016}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2014}+\frac{1}{2014}-\frac{1}{2013}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-\frac{1}{1}\right)\)

       = \(-\left(\frac{1}{2016}-1\right)\)

       = \(-\left(-\frac{2015}{2016}\right)\)

      =  \(-\frac{2015}{2016}\)

Mk làm kĩ lắm rồi. ko tích nữa mk cũng chịu bạn luôn @@

Giang Hương
Xem chi tiết
Lấp La Lấp Lánh
12 tháng 9 2021 lúc 14:42

\(\dfrac{1}{2014}-\dfrac{1}{2014.2013}-\dfrac{1}{2013.2012}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}=\dfrac{1}{2014}-\left(\dfrac{1}{2013.2014}+\dfrac{1}{2012.2013}+....+\dfrac{1}{1.2}\right)=\dfrac{1}{2014}-\left(\dfrac{1}{2013}-\dfrac{1}{2014}+\dfrac{1}{2012}-\dfrac{1}{2013}+...+1-\dfrac{1}{2}\right)=\dfrac{1}{2014}-\left(1-\dfrac{1}{2014}\right)=\dfrac{1}{2014}-\dfrac{2013}{2014}=-\dfrac{2012}{2014}=-\dfrac{1006}{1007}\)

Giang Hương
12 tháng 9 2021 lúc 14:37

Giúp mình với khocroi

Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 14:39

\(\dfrac{1}{2014}-\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}-...-\dfrac{1}{2013\cdot2014}\)

\(=\dfrac{1}{2014}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\right)\)

\(=\dfrac{1}{2014}-1+\dfrac{1}{2014}=-\dfrac{1006}{1007}\)

lop7a9 thcslqd
Xem chi tiết
nguyen 3
17 tháng 3 2020 lúc 14:09

A=1/2015-1/2015.2014-....-1/3.2-1/2.1

A=1/2015-[1/2015.2014+1/2014.2013+....+1/3.2+1/2.1]

A=1/2015-[1/1.2+1/2.3+....1/2014.2015]

A=1/2015-[1-1/2+1/2-1/3+...+1/2014-1/2015]

A=1/2015-[1-2015]

A=1/2015-1+1/2015

A=[1/2015+1/2015]-1

A=2/2015-1

A=-2013/2015

Khách vãng lai đã xóa
Đặng vân anh
Xem chi tiết
Nguyễn Cảnh Tùng
29 tháng 6 2021 lúc 9:30

\(=\frac{1}{2014}-\frac{2014-2013}{2014.2013}-\frac{2013-2012}{2013.2012}-...-\frac{3-2}{3.2}-\frac{2-1}{2.1}\)

\(=\frac{1}{2014}-\left(\frac{2014}{2014.2013}-\frac{2013}{2014.2013}\right)-...-\left(\frac{3}{3.2}-\frac{2}{3.2}\right)-\left(\frac{2}{2.1}-\frac{1}{2.1}\right)\)

\(=\frac{1}{2014}+\left(\frac{1}{2014}-\frac{1}{2013}\right)+...+\left(\frac{1}{3}-\frac{1}{2}\right)+\left(\frac{1}{2}-1\right)\)

\(=\frac{1}{1007}-1\)

\(=\frac{-1006}{1007}\)

Khách vãng lai đã xóa
Đừng Quan Tâm
Xem chi tiết

\(F=-\dfrac{1}{1.2}-\dfrac{1}{2.3}-...-\dfrac{1}{2014.2015}-\dfrac{1}{2015.2016}\)

\(\Rightarrow-F=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2014.2015}+\dfrac{1}{2015.2016}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2014}-\dfrac{1}{2015}+\dfrac{1}{2015}-\dfrac{1}{2016}=1-\dfrac{1}{2016}=\dfrac{2015}{2016}\)\(\Rightarrow F=\dfrac{-2015}{2016}\)

Hắc Hường
19 tháng 6 2018 lúc 10:31

Giải:

\(F=\dfrac{-1}{2016.2015}-\dfrac{1}{2015.2014}-\dfrac{1}{2014.2013}-\dfrac{1}{2013.2012}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

\(\Leftrightarrow F=-\left(\dfrac{1}{2016.2015}+\dfrac{1}{2015.2014}+\dfrac{1}{2014.2013}+\dfrac{1}{2013.2012}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)

\(\Leftrightarrow F=-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2012.2013}+\dfrac{1}{2013.2014}+\dfrac{1}{2014.2015}+\dfrac{1}{2015.2016}\right)\)

\(\Leftrightarrow F=-\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2014}-\dfrac{1}{2015}+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)

\(\Leftrightarrow F=-\left(\dfrac{1}{1}-\dfrac{1}{2016}\right)\)

\(\Leftrightarrow F=-\dfrac{2015}{2016}\)

Vậy ...

Nguyễn Thành Đăng
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
21 tháng 9 2017 lúc 21:43

Ta có : \(1-\frac{1}{2014.2013}-\frac{1}{2013.2012}-......-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2013.2014}\right)\)

\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2013}-\frac{1}{2014}\right)\)

\(=1-\left(1-\frac{1}{2014}\right)\)

\(=1-1+\frac{1}{2014}\)

\(=\frac{1}{2014}\)

Phạm Tuấn Đạt
21 tháng 9 2017 lúc 21:41

\(a,1-\frac{1}{2014.2013}-\frac{1}{2013.2012}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\right)\)

\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)

\(=1-\left(1-\frac{1}{2014}\right)\)

\(=1-1+\frac{1}{2014}\)

\(=\frac{1}{2014}\)

Mai Văn Đức
21 tháng 9 2017 lúc 21:53

1/2014