Giải phương trình
2(3x+5)cănx^2 + 9 = 3x + 2x + 30
Giải phương trình : 2(3x+5). \(\sqrt{x^2+9}\)= 3\(x^2\)+ 2x + 30
\(2\left(3x+5\right)\sqrt{x^2+9}=3x^2+2x+30\)
\(\Leftrightarrow\sqrt{x^2+9}=\frac{3x^2+2x+30}{2\left(3x+5\right)}\)
\(\Leftrightarrow\sqrt{x^2+9}-3=\frac{3x^2+2x+30}{2\left(3x+5\right)}-3\)
\(\Leftrightarrow\frac{x^2+9-9}{\sqrt{x^2+9}+3}-\frac{3x^2-16x}{6x+10}=0\)
\(\Leftrightarrow\frac{x^2}{\sqrt{x^2+9}+3}-\frac{x\left(3x-16\right)}{6x+10}=0\)
\(\Leftrightarrow x\left(\frac{x}{\sqrt{x^2+9}+3}-\frac{3x-16}{6x+10}\right)=0\)
Pt trong ngoặc vô nghiệm suy ra x=0
Giải các hệ phương trình sau:
a) \(\left\{{}\begin{matrix}2x+5y=5\\3x-5y=-30\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}4x-3y=-5\\3x+2y=-8\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}3x+3y=9\\4x-2y=-2\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}5x-4y=32\\6x+2y=18\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}2x-3y+5=0\\3x+5y-21=0\end{matrix}\right.\) f) \(\left\{{}\begin{matrix}x-y\sqrt{2}=0\\2x\sqrt{2}+y=5\end{matrix}\right.\)
g) \(\left\{{}\begin{matrix}5x+4y=-3\\3x+2y=11\end{matrix}\right.\) h) \(\left\{{}\begin{matrix}2x-4y=12\\5x+3y=17\end{matrix}\right.\)
e.
\(\left\{{}\begin{matrix}2x-3y+5=0\\3x+5y-21=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10x-15y=-25\\9x+15y=63\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}19x=38\\3x+5y=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{21-3x}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
f.
\(\left\{{}\begin{matrix}x-y\sqrt{2}=0\\2x\sqrt{2}+y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y\sqrt{2}=0\\4x+y\sqrt{2}=5\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x=5\sqrt{2}\\2x\sqrt{2}+y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=5-2x\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=1\end{matrix}\right.\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}5x=-25\\3x-5y=-30\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=\dfrac{3x+30}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=3\end{matrix}\right.\)
b.
\(\Leftrightarrow\left\{{}\begin{matrix}8x-6y=-10\\9x+6y=-24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}17x=-34\\9x+6y=-24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=\dfrac{-24-9x}{6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
c.
\(\left\{{}\begin{matrix}3x+3y=9\\4x-2y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\2x-y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=2\\2x-y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{7}{3}\end{matrix}\right.\)
d.
\(\left\{{}\begin{matrix}5x-4y=32\\6x+2y=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x-4y=32\\12x+4y=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x-4y=32\\17x=68\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{3x-32}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-3\end{matrix}\right.\)
giải phương trình
\(\left(2x^2-3x+1\right)\left(2x^2-3x-9\right)=-9\)
Đặt \(2x^2-3x+1=t\Rightarrow2x^2-3x-9=t-10\)
Phương trình trở thành:
\(t\left(t-10\right)=-9\Leftrightarrow t^2-10t+9=0\Rightarrow\left[{}\begin{matrix}t=1\\t=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x+1=1\\2x^2-3x+1=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x=0\\2x^2-3x-8=0\end{matrix}\right.\)
\(\Leftrightarrow...\) (bấm máy)
Bàil: Giải phương trình sau a) 2x - 3 = 3 - x b) 7x - 4 = 3x + 12 c) 3x - 6 + x = 9 - x d) 10x - 12 - 3x = 6 + x Bài 2: Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: a) 4x + 6 <= 2x - 2 b) 3x + 15 < 0 c) 3x - 3 > x + 5 d) x - 4 > - 2x + 5 Bài3: a) Một người đi xe máy từ 4 đến B với vận tốc 25km/h. Lúc về người đó đi với vận tốc 30km/h, nên thời gian về ít hơn thời gian đi là 20 phút. Tính AB ? b) Một người đi xe đạp từ A đến B với vận tốc 15 km/h. Sau đó quay về từ B về A với vận tốc 12 km/h. Cả đi lẫn về hết 4 giờ 30 phút. Tính quãng đường 4B Bài 4: Cho tam giác ABC vuông tại A với AB = 3cm AC= 4cm vẽ đường cao AE. a) Chứng minh rằng AABC đồng dạng với AEBA. b) Tia phân giác của góc ABC cắt AC tại F. Tính BF Bài 5: Cho tam giác ABC có AC = 8cm, AC = 16cm Gọi D và E là hai điểm lần lượt trên cạnh AB và AC sao cho BD = 2cm CE = 13cm Chứng minh rằng a. AAEB AADC b. AED= ABC, cho DE = 5cm Tính BC? C. AE AC AD AB
1:
a: =>3x=6
=>x=2
b: =>4x=16
=>x=4
c: =>4x-6=9-x
=>5x=15
=>x=3
d: =>7x-12=x+6
=>6x=18
=>x=3
2:
a: =>2x<=-8
=>x<=-4
b: =>x+5<0
=>x<-5
c: =>2x>8
=>x>4
giải phương trình sau bằng phương pháp đặt ẩn phụ:
1) \(2\left(3x+5\right)\sqrt{x^2+9}=3x^2+2x+30\)
2) \(2\sqrt[3]{x-2}+\sqrt{x+1}=3\)
Giải phương trình:
a) 4(2x+7)^2-9(x+30^2)=0
b) (5x^2-2x+10)^2= (3x^2+10x-8)^2
Bài 3: Giải các phương trình sau:
a, 2x3 - 50x = 0
b, 2x (3x - 5) - (5 - 3x)
c, 9(3x - 2) = x(2 - 3x)
d, (2x - 1)2 - 25 = 0
e, 25x2 - 2 = 0
f, x2 - 25 = 6x - 9
g, 5x(x - 3) - 2x + 6 = 0
h, 3x(x - 7) - 2(x - 7) = 0
i, 7x2 - 28 = 0
j, (2x + 1) + x(2x + 1) = 0
k, (x + 2)2 - (x - 2)(x + 2) = 0
l, x3 + 5x2 - 4x - 20 = 0
m, x2 - 25 + 2(x + 5) = 0
n, x3 - 3x + 2 = 0
o, x2 - 6x + 8 = 0
p, x2 - 5x - 14 = 0
q, (x - 2)2 - (x - 3)(x + 3) = 6
r, (2x - 1)2 - (2x + 5)(2x - 5) = 18
giải các phương trình sau:
a.3(x-2)-10=5(2x + 1)
b.3x + 2=8 -2(x-7)
c.2x-(2+5x)= 4(x + 3)
d.5-(x +8)=3x + 3(x-9)
e.3x - 18 + x= 12-(5x + 3)
a. 3(x-2)-10=5(2x + 1)
<=> 3x - 6 - 10 = 10x + 5
<=> 3x - 10x = 5 + 6 + 10
<=> -7x = 21
<=> x = -3
b. 3x + 2=8 -2(x-7)
<=> 3x + 2 = 8 - 2x + 14
<=> 3x + 2x = 8 + 14 - 2
<=> 5x = 20
<=> x = 4
c. 2x-(2+5x)= 4(x + 3)
<=> 2x - 2 - 5x = 4x + 12
<=> 2x - 5x - 4x = 12 + 2
<=> -7x = 14
<=> x = -2
d. 5-(x +8)=3x + 3(x-9)
<=> 5 - x - 8 = 3x + 3x - 27
<=> -x - 3x - 3x = -27 + 8 - 5
<=> -7x = -24
<=> x = 24/7
e. 3x - 18 + x= 12-(5x + 3)
<=> 3x - 18 + x = 12 - 5x - 3
<=> 3x + x - 5x = 12 - 3 + 18
<=> -x = 27
<=> x = - 27
a. 3(x-2)-10=5(2x + 1)
<=> 3x - 6 - 10 = 10x + 5
<=> 3x - 10x = 5 + 6 + 10
<=> -7x = 21
<=> x = -3
b. 3x + 2=8 -2(x-7)
<=> 3x + 2 = 8 - 2x + 14
<=> 3x + 2x = 8 + 14 - 2
<=> 5x = 20
<=> x = 4
c. 2x-(2+5x)= 4(x + 3)
<=> 2x - 2 - 5x = 4x + 12
<=> 2x - 5x - 4x = 12 + 2
<=> -7x = 14
<=> x = -2
d. 5-(x +8)=3x + 3(x-9)
<=> 5 - x - 8 = 3x + 3x - 27
<=> -x - 3x - 3x = -27 + 8 - 5
<=> -7x = -24
<=> x = 24/7
e. 3x - 18 + x= 12-(5x + 3)
<=> 3x - 18 + x = 12 - 5x - 3
<=> 3x + x - 5x = 12 - 3 + 18
<=> -x = 27
<=> x = - 27
giải phương trình:
2x2+3x+\(\sqrt{2x^2+3x+9}\)=33
Ta có: \(2x^2+3x+\sqrt{2x^2+3x+9}=33\)
\(\Leftrightarrow\left(2x^2+3x-27\right)+\left(\sqrt{2x^2+3x+9}-6\right)=0\)
\(\Leftrightarrow\left(2x+9\right)\left(x-3\right)+\dfrac{2x^2+3x-27}{\sqrt{2x^2+3x+9}+6}=0\)
\(\Leftrightarrow\left(2x+9\right)\left(x-3\right)+\dfrac{\left(2x+9\right)\left(x-3\right)}{\sqrt{2x^2+3x+9}+6}=0\)
\(\Leftrightarrow\left(2x+9\right)\left(x-3\right)\left(1+\dfrac{1}{\sqrt{2x^2+3x+9}+6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+9=0\\x-3=0\\1+\dfrac{1}{\sqrt{2x^2+3x+9}+6}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{9}{2}\\x=3\\1+\dfrac{1}{\sqrt{2x^2+3x+9}+6}=0\left(1\right)\end{matrix}\right.\)
Giải (1) ta có:
\(\left(1\right)\Leftrightarrow\dfrac{1}{\sqrt{2x^2+3x+9}+6}=-1\)
\(\Leftrightarrow1=-\sqrt{2x^2+3x+9}-6\)
\(\Leftrightarrow7=-\sqrt{2x^2+3x+9}\)
\(\Leftrightarrow49=2x^2+3x+9\)
\(\Leftrightarrow2x^2+3x-40=0\)
Ta có:Δ=32-4.2.(-40)=329
Vì Δ>0 nên phương trình có 2 nghiệm phân biệt là:
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-3+\sqrt{329}}{4}\\x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-3-\sqrt{329}}{4}\end{matrix}\right.\)
Vậy phương trình có 4 nghiệm là ....