Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Buddy
Xem chi tiết
Hà Quang Minh
26 tháng 8 2023 lúc 15:32

Ta có: 

\(T'\left(t\right)=-0,1\cdot2t+1,2=-0,2t+1,2\)

Tốc độ thay đổi của nhiệt độ ở thời điểm t = 1,5s là:

\(T'\left(1,5\right)=-0,2\cdot1,5+1,2=0,9\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 7 2019 lúc 18:19

Buddy
Xem chi tiết
Hà Quang Minh
26 tháng 8 2023 lúc 14:48

a, Quãng đường vật đã rơi tại thời điểm t = 2s sau khi thả vật đó là:

\(s\left(2\right)=0,81\cdot2^2=3,24\left(m\right)\)

b, Ta có: \(s'\left(t\right)=1,62t\Rightarrow s''\left(t\right)=1,62\)

Gia tốc của vật đã rơi tại thời điểm t = 2s sau khi thả vật đó là: 

\(a\left(2\right)=s''\left(2\right)=1,62\left(m/s^2\right)\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 22:49

Ta có: \(x\left( t \right) = {x_1}\left( t \right) + {x_2}\left( t \right) = 2\left[ {\cos \left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right) + \cos \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)} \right]\)

          \(2\left[ {\cos \left( {\frac{{\frac{\pi }{3}t + \frac{\pi }{6} + \frac{\pi }{3}t - \frac{\pi }{3}}}{2}} \right).\cos \left( {\frac{{\frac{\pi }{3}t + \frac{\pi }{6} - \frac{\pi }{3}t + \frac{\pi }{3}}}{2}} \right)} \right] = 2\left[2. {\cos \left( {\frac{\pi }{3}t - \frac{\pi }{{12}}} \right).\cos \frac{\pi }{4}} \right] = 2\sqrt 2 \cos \left( {\frac{\pi }{3}t - \frac{\pi }{{12}}} \right)\)

Vậy biên độ là \(2\sqrt 2 \), pha ban đầu \( - \frac{\pi }{{12}}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
11 tháng 9 2023 lúc 14:35

a) Ứng với mỗi giờ chỉ đọc được một số chỉ nhiệt độ.

Ứng với 7h thì nhiệt độ là \(36^\circ C\)

Ứng với 8h thì nhiệt độ là \(37^\circ C\)

Ứng với 9h thì nhiệt độ là \(36^\circ C\)

Ứng với 10h thì nhiệt độ là \(37^\circ C\)

Ứng với 11h thì nhiệt độ là \(38^\circ C\)

Ứng với 12h thì nhiệt độ là \(37^\circ C\)

Ứng với 13h thì nhiệt độ là \(38^\circ C\)

Ứng với 14h thì nhiệt độ là \(39^\circ C\)

Ứng với 15h thì nhiệt độ là \(39^\circ C\)

b) Với \(v = 10 \Rightarrow t = \dfrac{{180}}{{10}} = 18\)

Với \(v = 20 \Rightarrow t = \dfrac{{180}}{{20}} = 9\)

Với \(v = 30 \Rightarrow t = \dfrac{{180}}{{30}} = 6\)

Với \(v = 60 \Rightarrow t = \dfrac{{180}}{{60}} = 3\)

Với \(v = 180 \Rightarrow t = \dfrac{{180}}{{180}} = 1\)

Lập bảng:

\(v\)

10

20

30

60

180

\(t\)

18

9

6

3

1

Buddy
Xem chi tiết
HaNa
20 tháng 8 2023 lúc 20:39

$[v(t) = \frac{ds(t)}{dt} = \frac{d}{dt}(2t^3+4t+1)]$

$[a(t) = \frac{dv(t)}{dt} = \frac{d}{dt}(6t^2 + 4)]$

$[a(t) = 12t]$

Khi (t = 1), ta có:

$[v(1) = 6(1)^2 + 4 = 10 , \text{m/s}]$4

$[a(1) = 12(1) = 12 , \text{m/s}^2]$

Vậy, khi (t = 1), vận tốc của vật là 10 m/s và gia tốc của vật là $12 m/s$

Buddy
Xem chi tiết
Kiều Sơn Tùng
22 tháng 9 2023 lúc 14:46

a)

\(\begin{array}{l}\begin{array}{*{20}{l}}{\left[ {5;5,1} \right]}\end{array}:t = 5,1 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.5,{1^2} - 4,{{9.5}^2}}}{{5,1 - 5}} = 49,49\\\begin{array}{*{20}{l}}{\left[ {5;5,05} \right]}\end{array}:t = 5,05 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.5,{{05}^2} - 4,{{9.5}^2}}}{{5,05 - 5}} = 49,245\\\begin{array}{*{20}{l}}{\left[ {5;5,01} \right]}\end{array}:t = 5,01 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.5,{{01}^2} - 4,{{9.5}^2}}}{{5,01 - 5}} = 49,049\\\begin{array}{*{20}{l}}{\left[ {5;5,001} \right]}\end{array}:t = 5,001 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.5,{{001}^2} - 4,{{9.5}^2}}}{{5,001 - 5}} = 49,0049\\\begin{array}{*{20}{l}}{\left[ {4,999;5} \right]}\end{array}:t = 4,999 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.4,{{999}^2} - 4,{{9.5}^2}}}{{4,999 - 5}} = 48,9951\\\begin{array}{*{20}{l}}{\left[ {4,99;5} \right]}\end{array}:t = 4,99 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.4,{{99}^2} - 4,{{9.5}^2}}}{{4,99 - 5}} = 48,951\end{array}\)

 

Ta thấy: \(\frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}}\) càng gần 49 khi \(t\) càng gần 5.

b)

\(\begin{array}{l}\mathop {\lim }\limits_{t \to 5} \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9{t^2} - 4,{{9.5}^2}}}{{t - 5}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9\left( {{t^2} - {5^2}} \right)}}{{t - 5}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9\left( {t - 5} \right)\left( {t + 5} \right)}}{{t - 5}}\\ = \mathop {\lim }\limits_{t \to 5} 4,9\left( {t + 5} \right) = 4,9\left( {5 + 5} \right) = 49\end{array}\)

c)

\(\begin{array}{l}\mathop {\lim }\limits_{t \to {t_0}} \frac{{s\left( t \right) - s\left( {{t_0}} \right)}}{{t - {t_0}}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9{t^2} - 4,9.t_0^2}}{{t - {t_0}}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9\left( {{t^2} - t_0^2} \right)}}{{t - t_0^2}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9\left( {t - {t_0}} \right)\left( {t + {t_0}} \right)}}{{t - {t_0}}}\\ = \mathop {\lim }\limits_{t \to 5} 4,9\left( {t + {t_0}} \right) = 4,9\left( {{t_0} + {t_0}} \right) = 9,8{t_0}\end{array}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 14:57

Ta có:

\(\begin{array}{l}P'\left( t \right) = \frac{{{{\left( {500t} \right)}^\prime }\left( {{t^2} + 9} \right) - \left( {500t} \right){{\left( {{t^2} + 9} \right)}^\prime }}}{{{{\left( {{t^2} + 9} \right)}^2}}}\\ = \frac{{500\left( {{t^2} + 9} \right) - \left( {500t} \right).2t}}{{{{\left( {{t^2} + 9} \right)}^2}}}\\ = \frac{{500{t^2} + 4500 - 1000{t^2}}}{{{{\left( {{t^2} + 9} \right)}^2}}} = \frac{{4500 - 500{t^2}}}{{{{\left( {{t^2} + 9} \right)}^2}}}\end{array}\)

Tốc độ tăng dân số tại thời điểm \(t = 12\) là: \(P'\left( {12} \right) = \frac{{4500 - 500{t^2}}}{{{{\left( {{t^2} + 9} \right)}^2}}} \approx  - 2,88\).

Hoàng Đức Long
Xem chi tiết
Vũ Thành Nam
25 tháng 4 2019 lúc 10:36

Chọn A.

Từ: s = v0t + 0,5at2 = 20t + 0,5(-0,4)t2 (m)