Giúp em với ạ Cho ∆MNP vuông tại M. Biết MN=6cm;MP=8cm. a) Giải tam giác vuông MNP b) Vẽ đường cao MH, phân giác MD, Tinhd MH và MD? c) Chứng minh MN.sinP+MP.sinN=NP (Tính góc làm tròn đến độ, cạnh làm tròn đến số thập phân thứ 2)
Cho t.giác MNP vuông tại M, có đg cao MI. Tính MI, biết rằng :
a) MN=6cm; MP=8cm
b) MN=9cm; MP=16cm
c) MN=\(\sqrt{2}\)cm; \(\sqrt{3}\)cm
Giúp mình với ạ !!!
a, Áp dụng định lý Pytago vào tam giác MNP
\(MN^2+MP^2=NP^2\\ \Rightarrow NP=\sqrt{6^2+8^2}=10\left(cm\right)\)
Ta có \(MN\times MP=MI\times NP\\ \Rightarrow MI=\dfrac{6\times8}{10}=4,8\left(cm\right)\)
b, Áp dụng định lý Pytago vào tam giác MNP
\(MN^2+MP^2=NP^2\\ \Rightarrow NP=\sqrt{9^2+16^2}=\sqrt{337}\left(cm\right)\)
Ta cs
\(MN\times MP=MI\times NP\\ \Rightarrow MI=\dfrac{9\times16}{\sqrt{337}}\approx7,8\left(cm\right)\)
c, \(MN^2+MP^2=NP^2\\ \Rightarrow NP=\sqrt{\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2}=\sqrt{5}\left(cm\right)\)
Ta có \(MN\times MP=MI\times NP\\ \Rightarrow MI=\dfrac{\sqrt{2}\times\sqrt{3}}{\sqrt{5}}=\dfrac{\sqrt{30}}{5}\left(cm\right)\)
cho tam giác MNP vuông tại M biết MN=6cm,MP=8cm . tinh NP?
áp dụng định lí Py Ta GO vào tam giác vuông MNP ta có
\(NP^2=NM^2+NP^2\)
\(NP=\sqrt{MN^2+MP^2}=\sqrt{8^2+6^2}=10cm\)
Cho tam giác MNP vuông tại M , ME là đường cao ứng với cạnh huyền biết MN=6cm MP=10cm tính MP,ME,NE,EP
Sửa đề: NP=10cm
MP=căn 10^2-6^2=8cm
ME=6*8/10=4,8cm
NE=MN^2/NP=3,6cm
PE=10-3,6=6,4cm
cho tam giác MNP vuông tại M có MN=12cm;MP=16cm.kẻ đường cao MH a)chứng minh MHN đồng dạng PMN
b)vẽ đường phân giác MD; tính ND,PD
giải giúp em với ạ em cần gấp
a) Xét 2 tam giac vuong MHN và MPN, ta có:
\(\widehat{HMN}=\widehat{MPN}\) (cùng phụ với góc HMP)
=> \(\Delta HMN\sim\Delta MPN\left(g.g\right)\)
b) Áp dụng định lí pitago ta tính dc NP = 20 (cm)
Áp dụng tính chất đường phân giác trong tam giác MNP ta có:
\(\dfrac{DN}{DP}=\dfrac{MN}{MP}=\dfrac{12}{16}=\dfrac{3}{4}\) <=> \(\dfrac{DN}{3}=\dfrac{DP}{4}=\dfrac{DN+DP}{3+4}=\dfrac{20}{7}\)
=> DN = 60/7 (cm) và DP = 20/7 (cm)
Cho tam giác MNP vuông cân tại M. Biết NP = 6cm. Tính độ dài MN và MP
Cho tam giác MNP vuông tại M vẽ đường cao MH cho MN =3cm , MP=4cm a) chứng minh tam giác HNM đồng dạng với tam giác MNP b)tính độ dài NP,MH,NH ? GIÚP MÌNH VỚI Ạ !
a)xét \(\Delta HMN\) và \(\Delta MNP \)
\(\widehat{A}=\widehat{H}=90^o\left(gt\right)\)
\(\widehat{M}\) ( góc Chung)\)
\(\Rightarrow\Delta HMN\sim\Delta MNP\left(g-g\right)\)
\(\)
b) Theo ddịnh lí Py-ta-go, ta có:
\(NP^2=MN^2+MP^2\\ \Leftrightarrow NP^2=3^2+4^2\\ \Leftrightarrow NP^2=25\\ \Rightarrow NP=5\left(cm\right)\)
\(\dfrac{HM}{MN}=\dfrac{MP}{NP}\\ \Leftrightarrow\dfrac{HM}{3}=\dfrac{4}{5}\\ \Rightarrow HM=\dfrac{3\cdot4}{5}=2.4\left(cm\right)\)
) Theo ddịnh lí Py-ta-go, ta có:
\(MN^2=MH^2+NH^2\Rightarrow NH^2=MN^2-MH^2\\ NH^2=3^2-2.4^2=3.24\left(cm\right)\)
Cho tam giác MNP vuông tại M,MN=6cm, góc P=30 độ Giải tam giác MNP
Cho ∆MNP vuông tại N, NO là đường cao của ∆MNP. Từ O hạ đường vuông góc với NP tại
I. Biết MN=6cm, NP=8cm. Tính:
a. Đường cao NO của ∆MNP.
b. Đường cao OI của ∆NOP.
a: \(\dfrac{1}{NO^2}=\dfrac{1}{NM^2}+\dfrac{1}{NP^2}\)
hay NO=4,8(cm)
b: OI=3,84(cm)
cho tam giac MNP vuông tại M : có MN = 6cm; MP = 8cm; MI là trung tuyến ứng với cạnh huyền. Tính MI ?
( áp dụng định lý Pytago tính cạnh NP, rồi tính MI = NP/2 )
GIÚP MÌNH VỚI NHAA !!
Áp dụng PTG: \(NP=\sqrt{MN^2+MP^2}=10\left(cm\right)\)
Vì MI là trung tuyến ứng cạnh huyền nên \(MI=\dfrac{1}{2}NP=5\left(cm\right)\)