x : 1/3 + x : 1/9 + x : 1/27 +...+ x : 1/2187 = 9837
1.Tính tổng: 1/3+1/9+1/27+...+1/2187
2. Tìm x: (1/3+1/15+1/35+1/83)× x= 4/3
a)S = 1 + 1/3 + 1/9 + 1/27 + ..................... + 1/2187
b)S = 1 + 1/2 + 1/4 + 1/8 + ..................... + 1/128 + 1/256
c)A = 1 + 2 + 4 + 8 + ..................... + 4096 + 8192
d)1/1 x2 + 1/ 2 x 3 + 1/ 3 x 4 + ................. + 1/ 2013 x 2014
h)A = 1/1 x3 + 1/ 3 x 5 + 1/ 5 x 7 + ................. + 1/ 2013 x 2015
bai2a)1/ 2 x (1 + 2) + 1/ 2 x (1 + 2 + 3) + ............ + 1/2 x (1 + 2 + 3 + ....... + 9)
ai nhanh tick đúng nha
\(a)\) \(S=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
\(S=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(3S=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\)
\(3S-S=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\right)\)
\(2S=3+\frac{1}{3^7}\)
\(2S=\frac{3^8+1}{3^7}\)
\(S=\frac{3^8+1}{3^7}.\frac{1}{2}\)
\(S=\frac{3^8+1}{2.3^7}\)
Vậy \(S=\frac{3^8+1}{2.3^7}\)
Chúc bạn học tốt ~
1.Có bao nhiêu giá trị của \(\left|2x-1\right|=5\) thỏa mãn
A. 0 B. 1 C. 3 D.2
2. Tìm x, biết \(\dfrac{\left(-3\right)^x}{81}=-27\)
A. x=7 B. x=2187 C. x=3 D. x = -7
\(1,\Leftrightarrow\left[{}\begin{matrix}2x-1=5\\1-2x=5\end{matrix}\right.\Leftrightarrow D\\ 2,\Leftrightarrow\left(-3\right)^x=-27\cdot81=-2187=\left(-3\right)^7\\ \Leftrightarrow x=7\left(A\right)\)
1+1/3+1/9+1/27+....+1/2187
Tham khảo tại đây
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Chúc học tốt!
Đặt \(B=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
\(\Rightarrow3B=3.\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\right)\)
\(\Rightarrow3B=3+1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}\)
\(\Rightarrow3B-B=\left(3+1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}\right)-\)\(\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\right)\)
\(\Rightarrow2B=3-\frac{1}{2187}\)
\(\Rightarrow B=\left(3-\frac{1}{2187}\right):2\)
\(\Rightarrow B=\frac{6560}{2187}\)
Chắc sai !!!
Đặt A = \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
= \(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
3A = \(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\)
Lấy 3A - A = \(\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\right)\)
2A = \(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}-1-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-...-\frac{1}{3^7}\)
2A = \(3-\frac{1}{3^7}\)
A = \(\left(3-\frac{1}{3^7}\right):2\)
\(\Rightarrow1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}=\left(3-\frac{1}{3^7}\right):2\)
a = 1/3 + 1/9 + 1/27 + ... + 1/2187 + 1/6561 = ?
\(3A=1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{2187}\)
\(3A-A=\left(1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{2187}\right)-\left(\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{6561}\right)\)
\(2A=\dfrac{6560}{6561}\)
\(A=\dfrac{3280}{6561}\)
1/3 + 1/9 + 1/27 + 1/81 +...+1/729 + 1/2187
Đặt \(V=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+...+\dfrac{1}{729}+\dfrac{1}{2187}\)
\(\Rightarrow3V=3.\left(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+...+\dfrac{1}{729}+\dfrac{1}{2187}\right)\)
\(\Rightarrow3V=1+\left(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+...+\dfrac{1}{729}\right)\)
\(\Rightarrow3V=1+V-\dfrac{1}{2187}\)
\(\Rightarrow2V=1-\dfrac{1}{2187}\)
\(\Rightarrow V=\dfrac{1093}{2187}\).
A= 1/3 + 1/9 + 1/27 + 1/81 +...+1/729 + 1/2187
3A = 1 + 1/3 + 1/9 + 1/27 + 1/81 +...+1/729
=> 3A - A = 1 - 1/2187
=> 2A = ... => A = ...S=1+1/3+1/9+1/27+...+1/2187
S=1+1/3+1/9+1/27+..+1/2187
S=1+1/3+1/9+1/27+.....+1/2187
S = 1 + 1/3 + 1/9 + 1/27 +.....+ 1/2187
S x 3 = 3 + 1 + 1/3 + 1/9 + 1/27 +........+ 1/729
S x 3 - S = ( 3 + 1 + 1/3 + 1/9 + 1/27 +........+ 1/729 ) - ( 1 + 1/3 + 1/9 + 1/27 +.....+ 1/2187 )
S x 3 - S = 3 - 1/2187
S x 3 - S = 6560/2187
S = 6560/2187 : 2
Vậy S = 6560/4374