a. Cho C = 3 + 32 + 33 + 34 ………+ 3100 chứng tỏ C chia hết cho 40.
b. Cho các số 0; 1; 3; 5; 7; 9. Hỏi có thể thiết lập được bao nhiêu số có 4 chữ số chia hết cho 5 từ sáu chữ số đã cho
a) Không tính kết quả hãy so sánh : A=2019.2021 và B=20202
b) Cho biết A+4B ⋮ 13,(a,bϵN).Chứng minh rằng 10A+B ⋮ 13
c) Tìm số tự nhiên n,sao cho 5n+1⋮7
d) Cho C=3+32+33+34+...+3100 chứng tỏ C ⋮ 40
a: \(A=2019\cdot2021=2020^2-1\)
\(B=2020^2\)
Do đó: A<B
Chứng tỏ B chia hết cho 160
Với: B = 3 + 32 + 33 + ... + 3100
Lời giải:
$B=3+(32+33+...+3100)$
$=3+\frac{(3100+32).3069}{2}=3+4806054=4806057$ không chia hết cho $160$
Bạn xem lại đề.
Cho A = 3 + 32 + 33 + 34 ………+ 3100 chứng minh A chia hết cho 120.
\(A=3+3^2+3^3+3^4+.......+3^{100}\)
\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+.......+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(\Rightarrow A=3.\left(1+3+3^2+3^3\right)+........+3^{97}.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=3.40+.........+3^{97}.40\)
\(\Rightarrow A=40.\left(3+.......+3^{97}\right)\)
\(\Rightarrow A⋮40\)( 1 )
Vì \(A\)là tổng của các bậc lũy thừa của 3 nên \(A⋮3\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(A⋮40.3\)
\(\Rightarrow A⋮120\)
Vậy \(A⋮120\)( ĐPCM )
Cho A=3+32+33+34+...+3100.Chứng minh rằng A chia hết cho 120.
phải là chứng minh A chia hết cho 121
bài 1 :
a) so sánh A và B biết : A =229 và B=539
b) B = 31+32+33+34+...+32010 chia hết cho 4 và 13
c) tính A = 1-3+32-33+34-...+398-399+3100
bài 2 tìm cái số nguyên n thỏa mãn
a) tìm các số nguyên n sao cho 7 ⋮ (n+1)
b) tìm các số nguyên n sao cho (2n + 5 ) ⋮ (n+1)
Bài 1:
a. $2^{29}< 5^{29}< 5^{39}$
$\Rightarrow A< B$
b.
$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$
$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$
$=(1+3)(3+3^3+3^5+...+3^{2009})$
$=4(3+3^3+3^5+...+3^{2009})\vdots 4$
Mặt khác:
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$
$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$
Bài 1:
c.
$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$
$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$
$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$
$\Rightarrow A=\frac{3^{101}+1}{4}$
Bài 2:
a. $7\vdots n+1$
$\Rightarrow n+1\in \left\{1; -1; 7; -7\right\}$
$\Rightarrow n\in \left\{0; -2; 6; -8\right\}$
b.
$2n+5\vdots n+1$
$\Rightarrow 2(n+1)+3\vdots n+1$
$\Rightarrow 3\vdots n+1$
$\Rightarrow n+1\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow n\in \left\{0; -2; 2; -4\right\}$
cho A=3+32+33+34+......+3100.CMR: A chia hết cho 120
Bài 5. Cho B = 30 + 31 + 32 + 33 + .... + 3100. Chứng tỏ B chia hết cho 13
\(B=3^0+3^1+3^2...+3^{100}\)
\(=3^0\times\left(1+3^1+3^2\right)+3^3\times\left(1+3^1+3^2\right)+...+3^{98}\times\left(1+3^1+3^2\right)\)
\(=3^0\times13+3^3\times13+...+3^{98}\times13\)
\(=13\times\left(3^0+3^3+...+3^{98}\right)⋮13\)
Câu 17: (1 đ)
a) Tìm số nguyên x,y biết:
b) Cho M = 1+ 3+32 + 33 + 34 + …+ 399 + 3100 . Tìm số dư khi chia M cho 13, chia M cho 40 .
Chứng tỏ rằng 31 + 32 + 33 +…+ 399 + 3100 chia hết cho 4.
Đặt A = 3¹ + 3² + 3³ + 3⁴ + ... + 3⁹⁹ + 3¹⁰⁰
= (3¹ + 3²) + (3³ + 3⁴) + ... + (3⁹⁹ + 3¹⁰⁰)
= 3.(1 + 3) + 3³.(1 + 3) + ... + 3⁹⁹.(1 + 3)
= 3.4 + 3³.4 + ... + 3⁹⁹.4
= 4.(3 + 3³ + ... + 3⁹⁹) ⋮ 4
Vậy A ⋮ 4
Cho M = 1+ 3+32 + 33 + 34 + …+ 399 + 3100 . Tìm số dư khi chia M cho 13, chia M cho 40
Bạn ko biết gõ số mũ à gõ thế này bố ai mà hiểu được