y=m-2/m+1 nhân x+3
câu 1: 3 cộng x-y/x cộng y =1/2 vậy x/y là?
câu 2: biết x-y=0 giá trị của biểu thức m=7 nhân x-7 nhân y cộng 4 nhân a nhân x-4 nhân a nhân y-5=
1. phân tích đa thức thành nhân tử:
e, x(y-x)^2 -x^2+2xy-y^2
2. tính gt biểu thức
a, M= m^2(m+n)-n^2m-n^3 tại m= -2017 và n=2017
Bài 1:
e: Ta có: \(x\left(y-x\right)^2-x^2+2xy-y^2\)
\(=x\left(x-y\right)^2-\left(x-y\right)^2\)
\(=\left(x-y\right)^2\cdot\left(x-1\right)\)
Bài 2:
a: Ta có: \(M=m^2\left(m+n\right)-n^2m-n^3\)
\(=m^2\left(m+n\right)-n^2\left(m+n\right)\)
\(=\left(m+n\right)^2\cdot\left(m-n\right)\)
\(=\left(-2017+2017\right)^2\cdot\left(-2017-2017\right)\)
=0
Phân tích đa thức thành nhân tử
Câu 1 ( 4x^2 - 7x -50 )^2 - 16x^4 - 56x^3 - 49x^2
Câu 2 x^m+3 .y - x^m+1. Y^3 -x^3 .y ^ m+1 + xy^m+3
Câu 3 Chứng minh rằng với mọi số tự nhiên n thì n^4 +6n^3 + 11n^ 2 +6n chia hết cho 24
\(\left(4x^2-7x-50\right)^2-16x^4-56x^3-49x^2\)
\(\text{Phân tích thành nhân tử}\)
\(\left(-4\right)\left(2x-5\right)\left(7x+25\right)\)
\(x^m+3.y-x^m+1.Y^3-x^3.y^m+1+xy^m+3\)
\(\text{Phân tích thành nhân tử}\)
\(-\left(x^3y^m-xy^m-y^3-3y-4\right)\)
Câu 3 ko hiểu >o<
hài bài khó quá mình cũng học lớp 8 nhưng kho lắm
1)Giai phương trình
a) (2\(\sqrt{x}\)+3)(\(\sqrt{x}\)-1)-5= 2x-4
b) x\(\sqrt{x}\)-8 = 3\(\sqrt{x}\) (\(\sqrt{x}\)-2)
2) Cho biểu thức: M= 2y-3x\(\sqrt{y}\) + x2
a) Phân tích M thành nhân tử
b) Tính giá trị M khi x = 2; y= \(\dfrac{18}{4+\sqrt{7}}\)
2
\(M=2y-3x\sqrt{y}+x^2=y-2x\sqrt{y}+x^2+y-x\sqrt{y}\\ =\left(\sqrt{y}-x\right)^2+\sqrt{y}\left(\sqrt{y}-x\right)\\ =\left(\sqrt{y}-x\right)\left(\sqrt{y}-x+\sqrt{y}\right)\\ =\left(\sqrt{y}-x\right)\left(2\sqrt{y}-x\right)\)
b
\(y=\dfrac{18}{4+\sqrt{7}}=\dfrac{18\left(4-\sqrt{7}\right)}{16-7}=\dfrac{72-18\sqrt{7}}{9}=\dfrac{72}{9}-\dfrac{18\sqrt{7}}{9}=8-2\sqrt{7}\\ =7-2\sqrt{7}.1+1=\left(\sqrt{7}-1\right)^2\)
Thế x = 2 và y = \(\left(\sqrt{7}-1\right)^2\) vào M được:
\(M=2\left(\sqrt{7}-1\right)^2-3.2.\sqrt{\left(\sqrt{7}-1\right)^2}+2^2\\ =2\left(8-2\sqrt{7}\right)-6.\left(\sqrt{7}-1\right)+4\\ =16-4\sqrt{7}-6\sqrt{7}+6+4\\ =26-10\sqrt{7}\)
1:
a: =>2x-2căn x+3căn x-3-5=2x-4
=>căn x-8=-4
=>căn x=4
=>x=16
b: \(\Leftrightarrow\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)-3\sqrt{x}\left(\sqrt{x}-2\right)=0\)
=>(căn x-2)(x-căn x+4)=0
=>căn x-2=0
=>x=4
Bài 1: Phân tích các đa thức sau thành nhân tử
1)3x(x-1)+5(x-1)
2)4x (x-2y)-8y (2y-x)
3)a^2 (x-1)+b^2 (1-x)
4)3x (x-a) +4a(a-x)
5)5x (x-y)^2 +10y^2(y-x)^2
6)3x(x-3)^2+9(3-x)^2
7)x(m-a)^2-y(a-m)^2
8)6y^2(x-1)^2+9y(1-x)^2
1) \(3x\left(x-1\right)+5\left(x-1\right)\)
\(=\left(x-1\right)\left(3x+5\right)\)
2) \(4x(x-2y)-8y(2y-x)\)
\(=4x\left(x-2y\right)+8y\left(x-2y\right)\)
\(=\left(4x+8y\right)\left(x-2y\right)\)
\(=4\left(x+2y\right)\left(x-2y\right)\)
3) \(a^2\left(x-1\right)+b^2\left(1-x\right)\)
\(=a^2\left(x-1\right)-b^2\left(x-1\right)\)
\(=\left(a^2-b^2\right)\left(x-1\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(x-1\right)\)
4) \(3x\left(x-a\right)+4a\left(a-x\right)\)
\(=3x\left(x-a\right)-4a\left(x-a\right)\)
\(=\left(x-a\right)\left(3x-4a\right)\)
5) \(5x\left(x-y\right)^2+10y^2\left(y-x\right)^2\)
\(=5x\left(x-y\right)^2+10y^2\left(x-y\right)^2\)
\(=\left(5x+10y^2\right)\left(x-y\right)^2\)
\(=5\left(x+2y^2\right)\left(x-y\right)^2\)
6) \(3x\left(x-3\right)^2+9\left(3-x\right)^2\)
\(=3x\left(x-3\right)^2+9\left(x-3\right)^2\)
\(=\left(3x+9\right)\left(x-3\right)^2\)
\(=3\left(x+3\right)\left(x-3\right)^2\)
7) \(x\left(m-a\right)^2-y\left(a-m\right)^2\)
\(=x\left(a-m\right)^2-y\left(a-m\right)^2\)
\(=\left(x-y\right)\left(a-m\right)^2\)
8) \(6y^2\left(x-1\right)^2+9y\left(1-x\right)^2\)
\(=6y^2\left(x-1\right)^2+9y\left(x-1\right)^2\)
\(=\left(6y^2+9x\right)\left(x-1\right)^2\)
\(=3\left(2y^2+3x\right)\left(x-1\right)^2\)
#Ayumu
phân tích đa thức thành nhân tử
a)(2a+3)*x-(2a+3)*y+(2a+3)
b)(4x-y)*(a-1)-(y-4x)*(b-1)+(4x-y)*(1-c)
c)x^k+1-x^k-1(k thuộc N,k>1)
d)x^m+3-x^m+1(m thuộc N)
e)3*(x-y)^3-2*(x-y)^2
f)81a^2+18a+1
g)25a^2*b^2-16c^2
h)(a-b)^2-2*(a-b)*c+c^2
i)(ax+by)^2-(ax-by)^2
\(a,\left(2a+3\right)x-\left(2a+3\right)y+\left(2a+3\right)\)
\(=\left(2a+3\right)\left(x-y+1\right)\)
\(b,\left(4x-y\right)\left(a-1\right)-\left(y-4x\right)\left(b-1\right)+\left(4x-y\right)\left(1-c\right)\)
\(=\left(4x-y\right)\left(a-1\right)+\left(4x-y\right)\left(b-1\right)+\left(4x-y\right)\left(1-c\right)\)
\(=\left(4x-y\right)\left(a-1+b-1+1-c\right)\)
\(=\left(4x-y\right)\left(a+b-c-1\right)\)
\(c,x^k+1-x^k-1\)
\(=0?!?!\)
\(d,x^m+3-x^m+1\)
\(=4\)
\(e,3\left(x-y\right)^3-2\left(x-y\right)^2\)
\(=\left(x-y\right)^2\left(3\left(x-y\right)-2\right)\)
\(=\left(x-y\right)^2\left(3x-3y-2\right)\)
\(f,81a^2+18a+1\)
\(=\left(9a\right)^2+2.9a+1\)
\(=\left(9a+1\right)^2\)
\(g,25a^2.b^2-16c^2\)
\(=\left(5ab\right)^2-\left(4c\right)^2\)
\(=\left(5ab+4c\right)\left(5ab-4c\right)\)
\(h,\left(a-b\right)^2-2\left(a-b\right)c+c^2\)
\(=\left(a-b-c\right)^2\)
\(i,\left(ax+by\right)^2-\left(ax-by\right)^2\)
\(=\left(ax+by-ax+by\right)\left(ax+by+ax-by\right)\)
\(=2by.2ax\)
\(=4axby\)
\(\text{a) }\left(2a+3\right)x-\left(2a+3\right)y+\left(2a+3\right)\)
\(=\left(2a+3\right)\left(x-y+1\right)\)
\(\text{b) }\left(4x-y\right)\left(a-1\right)-\left(y-4x\right)\left(b-1\right)+\left(4x-y\right)\left(1-c\right)\)
\(=\left(4x-y\right)\left(a-1\right)+\left(4x-y\right)\left(b-1\right)+\left(4x-y\right)\left(1-c\right)\)
\(=\left(4x-y\right)\left(a-1+b-1+1-c\right)\)
\(=\left(4x-y\right)\left(a+b-c-1\right)\)
\(\text{c) }x^k+1-x^k-1\)
\(=\left(x^k-x^k\right)+\left(1-1\right)\)
\(=0\)
\(\text{d) }x^m+3-x^m+1\)
\(=\left(x^m-x^m\right)+\left(3+1\right)\)
\(=4\)
\(\text{e) }3\left(x-y\right)^3-2\left(x-y\right)^2\)
\(=\left(x-y\right)^2\left[3\left(x-y\right)-2\right]\)
\(=\left(x-y\right)^2\left(3x-3y-2\right)\)
\(\text{f) }81a^2+18a+1\)
\(=\left(9a\right)^2+2.9a.1+1^2\)
\(=\left(9a+1\right)^2\)
\(\text{g) }25a^2b^2-16c^2\)
\(=\left(5ab\right)^2-\left(4c\right)^2\)
\(=\left(5ab+4c\right)\left(5ab-4c\right)\)
\(\text{h) }\left(a-b\right)^2-2.\left(a-b\right).c+c^2\)
\(=\left(a-b-c\right)^2\)
\(\text{i) }\left(ax+by\right)^2-\left(ax-by\right)^2\)
\(=\left(ax+by+ax-by\right)\left(ax+by-ax+by\right)\)
\(=2by.2ax\)
\(=4byax\)
Phân tích đa thức thành nhân tử
A) 4a^2 - 8a
B.x^2 +2x^2y +xy^2 - xz^2
C.(y^2+y+1) .(y^2+y+2) - 12
Câu 2
Tính giá trị của m trong đó M= x^3-x^2-11x+m chia hết cho x-3
\(a.=4a\left(a-2\right)\)
\(b.=x\left(x+2xy+y^2-z^2\right)\)
\(=x\left(\left(x+y\right)^2-z^2\right)\)
\(=x\left(x+y-z\right)\left(x+y+z\right)\)
Gọi f( x ) = x3 - x2 - 11x + m
g( x ) = x - 3
Cho g( x ) = 0
\(\Rightarrow\)x - 3 = 0
\(\Rightarrow\)x = 3
\(\Rightarrow\)f( 3 ) = 33 - 32 - 11.3 + m
\(\Rightarrow\)f( 3 ) = - 15 + m
Để f( x ) \(⋮\)g( x )
\(\Leftrightarrow\)- 15 + m = 0
\(\Rightarrow\)m = - 15
Vậy : m = - 15 thì M = x3 - x2 - 11x + m \(⋮\)x - 3
c) \(\left(y^2+y+1\right)\left(y^2+y+2\right)-12\)(1)
Đặt \(y^2+y+1=t\)
\(\Rightarrow\left(1\right)=t\left(t+1\right)-12=t^2+t-12\)
\(=t^2+4t-3t-12=\left(t+4\right)\left(t-3\right)\)(2)
Mà\(y^2+y+1=t\)(ẩn phụ) nên
\(\left(2\right)=\left(y^2+y+5\right)\left(y^2+y-2\right)\)
Phân tích các đa thức sau thành nhân tử:
1.[(m+n)+(2m-3n)]^2
2.(x+y+z)^2
3.(2x-y+3z)^2
4.(x+y)(x-y)(2x+y)
5.8x^6-y^6
6.(m+n)^3-(2m+3n)^3
B1:
[(m+n)+(2m-3n)]^2
= (m+n)^2 + 2(m+n)(2m-3n) + (2m-3n)^2
= m^2 +2mn +n^2 + 4m^2 - 6mn + 4mn - 6n^2 + 4m^2 - 12mn + 9n^2
= 9m^2 - 12mn + 4n^2
B2,3
bn lm theo hdt ( a +b + c) ^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc nha
a)\(m+n+\left(2m-3n\right)^2=\left(3m-2n\right)^2\)
b)(x+y+z)^2 đã thành nhân tử
c)(2x-y+3z)^2 đã thành nhân tử, too
d)(x+y)(x-y)(2x+y).........
e)\(8x^6-y^6=\left(2x^2-y^2\right)\left(4x^4+2x^2y^2+y^4\right)\)
g)\(\left(m+n\right)^3-\left(2m+3n\right)^3\)
\(=-\left(m+2n\right)\left(7m^2+19mn+13n^2\right)\)
Tìm m để 3 đường thẳng (d1): y=x+1; (d2): y=3x-1; (d3):y=(m2-m+1)x+m cắt nhau tại 1 điểm
Hóng cao nhân, em đang cần phúc khảo bài này trong kì thi thử đợt vừa rồi ở THCS Hòa Phú bọn e ạ.